평면 굽힘부식피로 시험기를 사용하여 선박용 알루미늄합금재의 부식피로파양에 관한 연구를 한 결과 다음과 같은 결론을 얻었다. 1. 비저항이 증가함에 따라서 초기 부식피로균열발생까지의 반복회수는 지연되고, 그 부식감수성은 감소하는 양상을 나타낸다. 2. 비저항이 감소할수록 Paris rule의 실험상수 m 값은 작아지면서 응력강도 계수값에 비해 부식에 의한 영향이 더욱 민감해 진다. 3. 알루미늄 5086 합금의 부식피로균열은 입계균열파양의 양상을 보이고 있다. 4. 응력강도계수값이 증가함에 따라 부식감수성은 감소되어지고 응력강도계수값이 40kg.mm super(-3/2) 이상일 때 부식감수성은 거의 균일하게 된다.
Recently with the rapid development in marine and shipbuilding industries such as marine structures, ship, and chemical plants, there occurs much interest in the study of corrosion fatigue characteristics was closed up an important role in mechanical design. In this study, the 5086 Al-Alloy was tested by used of a rotary bending fatigue tester and was investigated under the environments of various specific resistance and air. The specific resistance, as a corrosion environment, was changed 15, 20, 25 and 5000Ω.cm. The corrosion fatigue crack initiation sensitivity was quantitatively inspected for 5086 Al-Alloy in the various specific resistance. The experimental constants of Paris rule were examined in the various specific resistances, and the influences of load and corrosion with affect the crack growth rate were compared with. Main results obtained are as follows: (1) Number of stress cycles to corrosion fatigue crack initiation delaies and corrosion fatigue crack initiation sensitivity decreases with the increasing for the specific resistance. (2) The experimental constant m of Paris rule decreases with the decreasing for specific resistance. Hence the effect of corrosion is more susceptible than that of stress intensity factor. (3) The corrosion fatigue crack of 5086 Aluminium Alloy appears intergranular fracture. (4) Corrosion sensitivity is decreased with the increasing stress intensity factor and is nearly uniform when stress intensity factor is over 40kg.mm super(-3/2)