200MHz ZnO변환기를 이용하여 초음파 현미경을 제작하여, 도미비늘을 화상화하고 광학현미경에 의한 사진과 비교하였다. 그 결과 광학적 반사에 의한 표면의 화상과 초음파의 기계적 탄성적 표면하 반사에 의한 화상에는 다소 차이가 있음을 확인하였다(Fig. 13 및 14). 초음파 현미경은 고체재료 또는 생물조직 상(10(12)등 여러 가지 생물연구 등의 응용이 계획되고 있으며, 특히 초음파 의학의 분야는 그 활용이 눈부실 것으로 예측된다. 초음파 현미경의 제작 그 자체보다, 이것을 도구로 하여 여러 가지 학술적, 기술적 성과가 기대되기 때문에 이 분야의 기초연구가 더욱 중요하게 생각되며 첨단산업분야에서도 비파괴검사 초음파 micro spectroscopy(U.M.S)등과 같은 물질의 탄성적 성질을 micro scale로 계측할 수 있는 등, 많은 활용이 있을 것이 예상된다. 또 초음파 현미경의 방법도 여러 가지이며, 이것을 계측수단으로 일반화하는 문제도 연구할 필요가 있다. 앞으로 광학이나 전자장치 등과 함께 급속한 발전이 기대된다.
To the purpose of preparation for investigating aspect of material that not revealed by the light microscope and extending our knowledge in applicable field, a scanning acoustic microscope system of 200MHz was organized and appraised its performance with experiments. Professor N.CHUBACHI in Tohoku University in Sendai, Japan provided the ZnO transducer with lens. The system for transmitting and receiving ultrasonic pulses of 200nsec was organized with a rectangular audio wave generator for modulation of 200MHz carrier wave, gating system for transmitting and receiving, mixer for converting intermediate frequency, a directional coupler, ZnO transducer, radio frequency amplifiers. detecter and personal computer. The Scanning system was driven in micro steps with three stepping motors in the direction of x, y and z axes. The system was a reflecting type scanning acoustic microscope and the operation program processed graphics data from receiving echo intensities. Photograph of fish scale obtained by optical microscope was compared with its image by the scanning acoustic microscope organized here. The result was satisfiable.