MgB4O7 열형광체의 활성체는 란탄계 금속인 Tb, Tm, Dy, La, Ho 및 Nd를 첨가하여 580˚C의 Ar 분위기에서 2시간동안 소결하여 제작하였다. 활성화에너지와 glow 곡선의 주 Peak의 세기는 peak shape법과 초기상승법의 두방법에 의해 결정했으며, 최적활성에너지는 0.76±0.02eV(Tm 첨가시), 0.94±0.03eV(Tm 첨가시) 및 0.72±0.02eV(Dy 첨가시)였다. 이들 열형광체들은 저 에너지 X-선에 대해 매우 높은 감도를 나타냈으므로 방사선 센서 소자로 개발하기 위한 기초자료가 될 것으로 생각된다.
LiF(Mg,Cu,Na,Si) 형광체의 γ선과 β선에 대한 TSEE 특성을 조사하였다. 상(60)Co γ선에 대한 감도는 약 450 counts/mR이었고, 여러 가지 β선에 대한 TSEE 에너지 의존성은 β입자의 평균에너지 0.02MeV에서 0.8MeV 사이에서 ±10%이었다. 그리고 제작된 형광체 앞면에 7mg.cm 상(-2)의 인체 등가물질을 두 면 입사 β입자의 에너지에 무관하게 피부 흡수 선량을 측정할 수 있었다.
LiF(Mg, Cu, P) 단결정의 미시적 이완매개변수와 유전손실 등을 구하기 위하여 TSD glow곡선을 측정하고, 측정된 glow곡선을 초기상승법, 가열율법 및 전면적법으로 해석하였다. 쌍극자의 이완시간 τ, pre-exponential인자 τ하(o) 및 활성화에너지E는 각각 12.19S, 1.97×10 상(-12)S 및 0.55eV이었다. 또한 TSD glow곡선을 사용하여 온도영역 300k~340k 사이에서 구한 LiF(Mg, Cu, P)단 결정의 tanδ값은 약 3×10 상(-2)이었다.
200MHz ZnO변환기를 이용하여 초음파 현미경을 제작하여, 도미비늘을 화상화하고 광학현미경에 의한 사진과 비교하였다. 그 결과 광학적 반사에 의한 표면의 화상과 초음파의 기계적 탄성적 표면하 반사에 의한 화상에는 다소 차이가 있음을 확인하였다(Fig. 13 및 14). 초음파 현미경은 고체재료 또는 생물조직 상(10(12)등 여러 가지 생물연구 등의 응용이 계획되고 있으며, 특히 초음파 의학의 분야는 그 활용이 눈부실 것으로 예측된다. 초음파 현미경의 제작 그 자체보다, 이것을 도구로 하여 여러 가지 학술적, 기술적 성과가 기대되기 때문에 이 분야의 기초연구가 더욱 중요하게 생각되며 첨단산업분야에서도 비파괴검사 초음파 micro spectroscopy(U.M.S)등과 같은 물질의 탄성적 성질을 micro scale로 계측할 수 있는 등, 많은 활용이 있을 것이 예상된다. 또 초음파 현미경의 방법도 여러 가지이며, 이것을 계측수단으로 일반화하는 문제도 연구할 필요가 있다. 앞으로 광학이나 전자장치 등과 함께 급속한 발전이 기대된다.