In many combustion systems, swirling combustion air is extensively applied as an aid for stabilization of high intensity combustion pocesses. Swirl, generally, causes significant effects on the flow field which, in turn, determines the size, shape, and stability of flames, and combustion intensity. The purpose of this study is to investigate the effect of swirls on flames produced from a model combustor designed in this paper. In order to impart swirls to the combustion air, a movable block swirl generator was used. Temperature distribution and radiative heat flux along the centerline of the swirling flame were measured. Data obtained from these swirl flows can be used as design data for high intensity or high efficiency combustion systems. The results obtained are summarized as follows: 1. Flame temperature profiles were measured at various swirl number. 2. The axial distance for maximum temperature from the centerline of burner increased as the swirl number increased. 3. Radiative heat flux increased as the swirl number and axial distance from burner increased.