Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of 180˚. 61 atm, 30 L/min, H2/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of KOCH3 suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg · hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.