Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at 750~850℃ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and H2 and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best MgNiO2 solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.