논문 상세보기

비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 1. 모형의 이론과 적용 KCI 등재

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/25746
서비스가 종료되어 열람이 제한될 수 있습니다.
한국수자원학회 논문집 (Journal of Korea Water Resources Association)
한국수자원학회 (Korea Water Resources Association)
초록

본 연구의 목적은 결측 혹은 미계측 증발접시 증발량과 우리나라에서 계측되고 있지 않은 알팔파 기준증발산량의 산정을 위하여 유전자 알고리즘이 내재된 일반화된 회귀신경망모형을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, 본 연구에서는 Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 본 연구를 통하여 최적 증발접시 증발량

The goal of this research is to develop and apply the generalized regression neural networks model(GRNNM) embedding genetic algorithm(GA) for the estimation and calculation of the pan evaporation(PE), which is missed or ungaged and of the alfalfa referenc

저자
  • 김성원(Dept., of, Rail., and, Civil, Engr. Dongyang, University) | Kim Sung-Won
  • 김형수(School, of, Civil, and, Environ., Engr., Inha, University) | Kim Hung-Soo