Generally, it has been known that positive plate efficiency is the most influential effect on the initial current capacity of lead acid battery. Thus, in this study, we have investigated the curing effect of the positive plate, which is one of the important lead acid battery processes. The curing process of the positive plate is performed either with the separation of each plate with 1mm gap or with no gap of plate. As a result, when there is no interval between each plate, the higher temperature current happened than expected, resulting in the changes in the initial current efficiency of the lead acid battery. The chemical composition and crystal structure of a material coated on the positive plate were identified with XRD and SEM. It was resulted that were only there not a lot of 4BS (tetrabasic-lead sulfate, 4PbO·PbSO4) on the plate in case of curing of plates without interval, but a large quantity of Pb3O4 also formed on the surface. On the other hand, it was observed that 3BS (tribasic-lead sulface, 3PbO·PbSO4·H2O) was the main product on the plate in case of typical curing process with some interval. From the initial current capacity test, the positive plate having 3BS was approximately 40% higher in initial current capacity than that having 4BS. It was concluded that 4BS and Pb3O4 on the plate surface were harmful to the initial current capacity of lead acid battery.