A novel experimental set-up allowing quantitative determination of the adsorption capacity of gas molecules on a surface under high-vacuum conditions is introduced. Using this system, the toluene adsorption capacities of various carbon nanostructures were determined. We found that for a give surface area, the adsorption capacities of toluene of multi-walled carbon nanotubes and nanodiamonds were higher than that of activated carbon, which is widely used as an adsorbent of volatile organic compounds. The adsorption of toluene was reversible at room temperature.