본 논문은 비선형성을 많이 내포하고 있어 수학적으로 모델링 하기 어려운 선박용 안정화 위성 안테나 시스템을 모델링하기 위해서, 신경 회로망의 오차 및 응답시간을 최소로 하는 최적 구조 신경 회로망 모델을 도출하고 이를 적용하고자 한다. 오차와 응답시간을 최소화하기 위해 유전알고리즘을 이용하여 신경 회로망 구조를 설계하였다. 안테나 시스템으로부터 얻어진 입출력 데이터에 거하여 본 논문에서 제안한 식별기를 이용하여 안테나 시스템을 식별하였으며, 실제 선박의 운동 성분에 대해서도 시스템을 잘 표현할 수 있는 최적 구조 신경 회로 기반 시스템 식별기를 얻을 수 있었다. 실제 실험을 통해서, 최적 신경회로망 구조가 안테나 시스템 식별에 효과적인 것을 알 수 있었다.
This paper deals with modelling and identification of a shipboard stabilized satellite antenna system using the optimal neural network structure. It is difficult for shipboard satellite antenna system to control and identification because of their approximating ability of nonlinear function So it is important to design the neural network with optimal structure for minimum error and fast response time. In this paper, a neural network structure using genetic algorithm is optimized And genetic algorithm is also used for identifying a shipboard satellite antenna system It is noticed that the optimal neural network structure actually describes the real movement of ship well. Through practical test, the optimal neural network structure is shown to be effective for modelling the shipboard satellite antenna system.