As port transport system consists of subsystems such as navigation system, cargo handling system, storage system, inland transport system, and Management and Information system, the productivity of this system is determined by the minimum level of subsystem. From the viewpoint of elaborating the efficiency of integrated system, it is valuable to determine the optimal level of harbour tug boat which is the most important factor of navigation system. This paper treats the optimal amount of harbour tug boat by simulation, and applied to Pusan port. In the course of simulation, an emperical formula is introduced for determining the Horse Power (HP) of tug boat by the ship's gross tonnage (G/T) refering to the cases of various ports of other countries, that is ; Y=9.96X0.6+569. X : The gross tonnage of vessel (G/T). Y : The Horse Power (HP) of tug boat. The results of the simulation are summarized as follows ; 1) In 1987, three or four low-powered harbour tug boats, five mid-powered harbour tug boats and four high-powered harbour tug boats are necessary in the mean level. But, five or seven low-powered harbour tug boats, ten mid-powered harbour tug boats and eight high-powered harbour tug boats are necessary lest delay should occur at all. 2) In 1992, 1lee or four low-powered harbour tug boats, six mid-powered harbour tug boats and seven high-powered harbour tug boats are estimated and be necessary in the mean level.