본 연구에서는 철골 골조 구조물의 안전성 모니터링을 위하여 계측한 변형률을 통해 구조물에 작용한 하중을 식별하는 알고리즘을 제안한다. 기존의 시스템 식별 연구에서 구조물의 강성 등을 변수화한 것과는 다르게, 본 연구에서는 구조물에 작용한 하중과 이로 인해 구조물에 발생하는 변형률 간의 관계를 행렬로 정의하고, 이 행렬 및 작용한 하중을 변수화 한다. 계측한 변형률과 변수를 통해 추정한 변형률사이의 차이를 오차함수로 설정하고 이를 최소화시키기 위해 최적화 알고리즘 중 하나인 유전자 알고리즘을 적용한다. 구해진 변수와 계측변형률을 통해 작용한 하중을 식별하고 구조물의 하중 변화 시 미계측 지점의 응답을 추정한다. 본 연구에서 제안하는 하중 식별 알고리즘을 검증하기 위해 3차원 철골 골조 구조물의 정적 가력 실험을 수행하였고, 계측한 변형률을 통해 가해진 하중을 낮은 오차 수준으로 식별할 수 있었다. 또한, 하중 조건 변화 시, 계측한 변형률을 통해 모니터링 대상이 되는 미계측 지점의 변형률을 0.17~3.13%의 오차 범위로추정하였다. 본 연구가 제안하는 식별법이 철골 구조물의 보다 현실적인 안전성 모니터링에 효과적으로 적용될 것으로 기대된다.
This study proposes a load identification for the safety monitoring of the steel structure based on measured strain data. Insteadof parameterizing the stiffness of structure in the existing system identification researches, the loads on a structure and a matrix (the unit strain matrix) defined by the relationship between strain and load on structure are parameterized in this study. The errorfunction is defined by the difference between measured strain and strain estimated by parameters. In order to minimize this errorfunction, the genetic algorithm which is one of the optimization algorithm is applied and the parameters are found. The loads onthe structure can be identified through the founded parameters and measured strain data. When the loads are changed, the unmeasured strains are estimated based on founded parameters and measured strains on changed state of structure. To verify theload identification algorithm in this paper, the static experimental test for 3 dimensional steel frame structure was implemented andthe loads were exactly identified through the measured strain data. In case of loading changes, the unmeasured strains which aremonitoring targets on the structure were estimated in acceptable error range (0.17~3.13%). It is expected that the identification method in this study is applied to the safety monitoring of steel structures more practically.