논문 상세보기

Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구 KCI 등재

A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/278339
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
대한안전경영과학회지 (Journal of Korea Safety Management & Science)
대한안전경영과학회 (Korea Safety Management & Science)
초록

Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide(Ca(OH)2), CaO, and TiO2 were used as catalysts. Harmful air polluting gases such as SO2 were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide(SO2). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the Ca(OH)2 catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas SO2with the Ca(OH)2 catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas SO2 by the Ca(OH)2 catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

저자
  • 김다영(인천대학교 안전공학과) | Kim, Dayoung
  • 황명환( 인천대학교 안전공학과) | 황명환
  • 우인성( 인천대학교 안전공학과) | 우인성