Matrix Metalloproteinases (both MMP2 and -9) play a pivotal role of the embryos hatching and implantation. Therefore, the objective of this study was carried out to investigate the influence of MMP2 and MMP9 on embryo development potential and subsequent effect at molecular level. There was no significant difference of cleavage rate among the groups. The development competence of blastocyst was significantly higher (P<0.05) in MMP9 treatment (39.81±16.61) than that to the combined treatment of MMP2 and –9 (23.68±0.27), but there was no significant difference among the control vs. MMP2 vs. MMP9 (35.05±2.74 vs. 32.71±6.18 vs. 39.81±16.61, respectively). On the other hand, the hatching rate of blastocysts was significantly lower (P<0.05) in combined group of MMP2 and –9 (12.55±0.09) (Table1). The expression level of MMP2 and MMP9 was significantly lower (P<0.05) in the entire treatment groups than that in the control group. But the expression of MMP9 was significantly higher (P<0.05) when compared in the entire treatment groups. The relative expression embryonic developmental gene, IFNt expression level significantly lower (P < 0.05) in the MMP9 embryos. The placenta establishment genes, PLAC8 and SSLP1, expression were significantly higher (P < 0.05) in the MMP2 embryos compared to other groups. Transcription regulation gene, HNRNPA2B1, was higher (P < 0.05) in the combined group of MMP2+MMP9 than that in the other groups. In conclusion, our results suggest that MMPs to culture medium improves the blastocyst development rate and further impact on target gene expression analysis.