It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.