Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges
본 연구는 순수 면내모멘트를 발생시키는 선형적으로 변하는 수직응력을 받고 있는 단순지지된 마주보는 두 모서리와 자유경계를 가지는 직사각형 판의 자유진동과 좌굴의 엄밀해를 구하였다. 정현적으로 가정된 하중방향(x)으로의 변위함수는 단순지지 경계조건을 만족시키며, 평판을 지배하는 편미분 운동방정식 을 y 방향으로의 변계수를 갖는 상미분방정식으로 만든다. Frobenius법을 통하여, y방향으로의 멱급수를 가정하면 이 식을 엄밀하게 풀 수 있으며, 그 식의 합당한 계수를 구할 수 있다. 자유경계조건을 y=0과 b에 적용하면, 고유진동수와 임계좌굴모멘트를 구할 수 있는 4차의 특성행렬식이 만들어진다. 본 논문에서는 이 급수해의 수렴성이 면밀히 조사되었으며, 임계 좌굴모멘트의 수치결과와 모드형상이 주어진다. 상대적으로 정확도가 떨어지는 1차원적인 보 이론으로 구한 결과치와의 비교연구가 이루어진다. 또한 자유진동수와 모드형상 주어진다. 프와송비(v)의 변화에 따른 좌굴모멘트와 고유진동수의 변화가 도표로 주어진다.
This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for 0 ≤ v ≤ 0.5, valid for isotropic materials.