This paper described the estimation of corn and soybeans yields of four states in the US Midwest using time-series satellite imagery and climate dataset between 2001 and 2012. We first constructed a database for (1) satellite imagery acquired from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) including NDVI (Normalized Di°erence Vegetation Index), EVI (Enhanced Vegetation Index), LAI (Leaf Area Index), FPAR (Fraction of Photosynthetically Active Radiation), and GPP (Gross Primary Productivity), (2) climate dataset created by PRISM (Parameter-Elevation Regressions on Independent Slopes Model) such as precipitation and mean temperature, and (3) US yield statistics of corn and soybeans. ˜en we built OLS (Ordinary Least Squares) regression models for corn and soybeans yields between 2001 and 2010 after correlation analyses and multicollinearity tests. These regression models were used in estimating the yields of 2011 and 2012. Comparisons with the US yield statistics showed the RMSEs (Root Mean Squared Errors) of 0.892 ton/ha and 1.095 ton/ha for corn yields in 2011 and 2012 respectively, and those of 0.320 ton/ha and 0.391 ton/ha for soybeans yields. ˜is result can be thought of as a good agreement with the in-situ statistics because the RMSEs were approximately 10% of the usual yields: 9 ton/ha for corn and 3 ton/ha for soybeans. Our approach presented a possibility for extending to more advanced statistical modeling of crop yields using satellite imagery and climate dataset.