An Artificial Intelligence Evaluation on FSM-Based Game NPC
게임 NPC(Non Player Character)는 게임 플레이어와 대전 또는 협력함으로써 게임의 재미를 증가시키는 중요한 요소이다. 대부분 기존 게임에서 제공되는 NPC 인공지능은 FSM(Finite State Machine)으로 제작되어 행동 패턴이 정해져 있고 능력이 동일한 특징을 갖고 있다. 따라 서 이러한 특징을 갖는 NPC들과 대전하는 플레이어는 창조적인 게임 플레이를 진행하는 것 이 어려울 수 있다. 본 논문은 이 문제점을 개선하기 위하여 실제 생활에서 늑대들이 먹이를 사냥하는 행동 모델 을 게임 NPC의 행동 모델로 제작하고 이를 평가하기 위한 것이다. 이를 위하여 첫째, 실세계 에서 늑대들이 먹이를 포획하기 위한 행동 상태들을 조사 연구한다. 둘째, 이 행동 상태들을 Unity3D 엔진을 이용하여 구현한다. 셋째, 구현된 NPC들의 상태 전이 비율과 실세계의 NPC 들의 상태 전이 비율, 일반적인 게임 NPC의 상태 전이 비율을 비교한다. 비교 결과, 구현된 NPC들의 상태 전이 비율은 실세계의 상태 전이 비율과 비슷함을 보인다. 이는 구현된 NPC들 의 행동 패턴이 실세계의 늑대 사냥 행동 패턴과 유사함을 의미하는데, 이렇게 함으로써 플레 이어에게 보다 증가된 사용자 경험을 제공할 수 있다.
NPC in game is an important factor to increase the fun of the game by cooperating with player or confrontation with player. NPC's behavior patterns in the previous games are limited. Also, there is not much difference in NPC's ability among the existing games because it's designed to FSM. Therefore, players who have matched with NPCs which have the characteristics may have difficulty to play. This paper is for improving the problem and production and evaluation of the game NPC behavior model based on wolves hunting model in real life. To achieve it, first, the research surveys and studies behavior states for wolves to capture prey in the real world. Secondly, it is implemented using the Unity3D engine. Third, this paper compares the implemented state transition probability to state transition probability in real world, state transition probability in general game. The comparison shows that the number of state transitions of NPCs increases, proportions of implemented NPC behavior patterns converges to probabilities of state transition in real-world. This means that the aggressive behavior pattern of NPC implemented is similar to the wolf hunting behavior pattern of the real world, and it can thereby provide more player experience.