Landfills are nettlesome sources of malodorous gases as well as methane that has the second largest radiative forcing of long residence-greenhouse gases, followed carbon dioxide. Because methane and malodorous gases are simultaneously emitted in landfills, investigation of whether or not methane and malodorous gases affect each other’s degradation is important. Amines such as monomethylamine(MMA), dimethylamine(DMA) and trimethylamine(TMA) are representative malodorous gases from landfills. In this study, the effect of amines on the bio-oxidation of methane was evaluated using a methane-oxidizing consortium where the dominant bacteria were Methylocystis spp. Amines inhibited the methane oxidation by the consortium, and the inhibition effect increased in the order of TMA > DMA > MMA. Methane oxidation rates in the consortium decreased with increasing amine/methane ratio(mol/mol). These results can be used to design and optimize the biological processes for simultaneous removal of methane and malodorous gases.