Starvation resistance is an important fitness trait that is controlled by both environmental and heritable factors. The main objective of this study is to explore the genotype-by-nutrient interactions for starvation resistance and its correlating physiological traits in Drosophila melanogaster. In this study, we conducted a split-family quantitative genetic experiment, in which female adults of Drosophila from 19 isofemale genetic lines were allowed to ingest one of two synthetic diets that differed in protein-to-carbohydrate ratio (P:C = 4:1 or 1:16 with the P+C concentration of 120 g L-1) before they were assayed for starvation time and lipid storage. In all genetic lines, Drosophila flies that had fed carbohydrate-rich diet (P:C=1:16) resisted starvation better and stored more lipids than did those that had fed protein-rich diet (4:1). Importantly, the extent to which both starvation resistance and lipid reserves were affected by dietary P:C ratio varied greatly among different genetic lines of Drosophila, as indicated by significant genotypeby-nutrient interactions for these two traits. When the patterns of the bivariate reaction norm for body lipid and starvation resistance were compared across the genotypes, we found strong evidence for genetic variations in the pattern of energy storage and usage associated with maintaining survival under starvation in Drosophila.