A viral histone H4 is encoded in a polydnavirus called Cotesia plutellae bracovirus (CpBV), which is symbiotic to an endoparasitoid wasp, C. plutellae. Compared to general histone H4, the viral H4 possesses an extra N-terminal tail containing 38 amino acid residues, which has been presumed to control host gene expression in an epigenetic mode. This study addressed the mutational analysis of extra N-terminal amino acid residues of a viral histone H4 and their epigenetic control efficacy. Mutational analysis was performed by serially deleting each of the nine amino acid residues from N-terminal tail of a viral histone H4. Transient expression of each truncated mutants (K1M-K19) in diamondback moth, Plutella xylostella, was performed by microinjection of a recombinant expression vector and confirmed by RT-PCR. Under transient expression, we analysed the effect of these mutations on target gene, transferin. Interestingly, we found that truncated mutants (K1M-K15) did not inhibit the expression of target gene but mutations thereafter (K6M-K9M) significantly alter its expression. As expected these truncated mutants (K1M-K5M) also inhibit hemocyte nodule formation and development of Plutella xylostella. This suggest that lysine residue (K6) in the N-terminal tail is very crucial for the epigenetic control efficacy of viral histone H4.