Sacbrood virus (SBV), a causative agent of larval death in honeybees, is one of the most devastating diseases in bee industry throughout the world. Lately the Korean Sacbrood virus (KSBV) induced great losses in Korean honeybee (Apis cerana) colonies. However, there is no culture system available for honeybee viruses, including SBV, therefore, the research on honeybee viruses is practically limited until present.
In this study, we investigated the growth and replication of KSBV in cell cultures. The growth of KSBV was demonstrated by RT-PCR, quantitative real-time PCR, TEM and nucleotide sequence analysis.
The results demonstrated that SBVshowed the replication signals in mammalian cell lines, including Vero cells without any signs of cytopathic effect (CPE). The results of RT-PCR, quantitative real-time PCR and in vivo infection with KSBV were also indicated the replication. Phylogenetic tree analysis shows our sequence included in distinct group with other SBV strains from China and Korea. It clearly showed the differenciation between field strain and attenuated strain through cell culture.
The results of present study demonstrated for the first time that SBV like other animal viruses could be adapted and attenuated in cells through the sequential passages. The sequential adaptation through cell culture could result in discrepancy of pathogenicity of virus and morphological characterization. For this reason, the present results indicated that the cell adapted SBV could be a valuable tool to study the general properties of this emerging virus, including pathogenicity in the future.