This paper presents a method for the assesment of thermal and vibration fatigues in integral exhaust manifold/turbine housing system. Most of failures on turbine housing are observed by thermal cyclic loads. In order to predict thermal failures by finite element analysis, we considered the temperature-dependent inelastic materials and transient temperature histories based on the thermal shock test. The results showed that the plastic strains of localized critical regions such as valve seat coincided well with crack locations from an endurance test. But, some failures around neck areas of turbine housing could not predict from thermal stress analysis. These cracks were originated due to the vibration excitations near resonance frequencies within engine operating ranges. The stress results of neck areas, which divided by temperature dependent yield stresses, from harmonic analysis showd a good agreement with experimental results.