Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity. The GS activity along with mRNA expression were found higher in transgenic than in wild type plants. And this is validated by the low malondialdehyde contents observed 10 days after treatment. GS overexpression in rice resulted in the modulation of expression of enzymes responsible for membrane peroxidation, which may result in the sudden death of plants. Our results thus describe the features of a transgenic rice plants with enhanced tolerance to Cd toxicity.