검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1. 열대아시아지역에 적응하는 수출용 일대잡종 벼 품종을 육성할 목적으로 2013년에 미얀마에서 수집한 도열병과 흰잎 마름병에 저항성인 ‘MY1B’를 국제미작연구소(IRRI)에서 육성 된 일대잡종 벼 웅성불임친인 ’IR68897A’에 4회 여교배하여 2016년에 불임친인 ‘KR1A’와 유지친인 ‘KR1B’를 육성하였으며 육성된 불임친 ‘KR1A’를 회복친유전자를 가진 우량계통들과 검정교배한 결과 베트남 지역 적응성이 높고 도정특성이 우수한 OM052와 교배한 조합이 우수하여 교배번호 KR0695H을 부여한 후 생산력 검정에 필요한 F1종자를 생산하였고 선발된 일대잡종 벼 계통에 대해 2년간의 지역적응시 험을 통해 우수성이 인정되어 2019년 농촌진흥청 직무육성 신 품종선정위원회에서 신품종으로 선정되면서 ‘KGHR1’으로 명명되었음 2. ‘KGHR1’의 F1 종자생산을 위해 육성된 불임친과 유지친, 회복친의 농업형질을 조사한 결과 불임친인 ‘KR1A’의 임실율이 0%인 완전불임을 보였고 불임친인 ‘KR1A’과 유지친인 ‘KR1B’을 1% potassium iodide-iodine(I-KI)에 염색해 본 결과 ‘KR1A’는 염색이 되지 않은 완전불임을 나타내어 일대잡종벼의 특성에 부합되었음 3. ‘KGHR1’는 중부평야지 보통기 재배에서 평균 출수기가 8월 13일로 대비품종 ‘다산’보다 5일 늦은 중생종이었고 간장은 103 cm로 다산의 82 cm보다 21 cm 큰 장간이고, 이삭길이는 28 cm로 ‘다산’ 보다 길고 이삭당 벼알수는 202개로 ‘다산’ 보다 69개 많았고 등숙비율은 76.3%로 대비품종 ‘다산’ 83.7% 보다 낮게 조사되었음 4. ‘KGHR1’는 도열병과 줄무늬잎마름병에 저항성이었고 흰 잎마름병은 K1, K2, K3 균계에 저항성을 보였지만, 오갈병 및 멸구류에 대한 저항성은 없었으며 도복에는 강하며, 수발 아와 내냉성은 ‘다산’과 비슷한 수준을 보였음 5. ‘KGHR1’의 입형은 현미장폭비가 3.37로 장원립이고 백미외관은 심복백이 0/1로 맑고 투명하였으며 단백질함량은 6.3%로 ‘다산’ 보다 낮은 반면 아밀로스함량은 22.7%로 ‘다산’ 보다 높았음 6. ‘KGHR1’의 제현율과 현백률은 대비품종 ‘다산’과 차이가 없었고 완전미도정수율은 40.5%로 ‘다산’ 보다 낮았으나 베트남 현지 일대잡종 벼 품종인 IIA838 보다 높았음 7. ‘KGHR1’의 쌀수량은 ‘수원’ 등 3개 지역에서 실시한 지역적응시험 보통기 보비재배 평균 6.60 MT/ha로 ‘다산’의 6.59 MT/ha와 차이가 없는 수량성을 보였고 수원에서 3년간 실시한 생산력 검정에서는 ‘다산’ 보다 23% 증수하였으며 특히 2019년에 7.59 MT/ha로 베트남 대조품종인 IIA838 보다 도 11% 증수하였으나 베트남 하이하우에서 2018년에서 2019 년까지 2년간 2작기씩 현지 관행재배로 4회 실시한 생산력검 정시험에서는 8.25 MT/ha로 대조품종인 IIA838 보다 12% 떨어지는 수량을 나타내었음 8. ‘KGHR1’는 국내 종자산업 육성과 수출경쟁력을 높이기 위해 2014년부터 수행한 골든시드프로젝트(Golden Seed Project, GSP)의 결과로 개발된 첫 번째 일대잡종 벼 품종으로 우리나라 벼 종자수출산업의 발전을 위한 밑거름이 될 것임
        4,000원
        2.
        2013.05 구독 인증기관 무료, 개인회원 유료
        The goal of this study is optimization of transparency liquid chemical coating process. At coating process in the maintenance of the coating gap is an important factor. Specially, at a small split from the substrate using the existing methods is difficult to maintain the uniformity of coating. In this study, slit coating uniformity and compare inkjet uniformity and thickness profile was analyzed using alpha-step. Also, the pencil hardness test and the color difference measurement were performed. As a result, changes of the coating process need to be made depending on the type of substrate and inkjet coating was suitable for substrate of a small split.
        4,000원
        3.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        The International Union for the Protection of New Varieties of Plants (UPOV) promotes an effective system of plant variety protection and encourages the development of new varieties of plants. This international convention was initiated to standardize the system efforts and strengthen policy. The establishment of cultivar discrimination system is very important to distinguish varieties between domestic and foreign agricultural products. It is necessary for the protection of breeders’rights. In addition, it will help for more efficient and quality management of plant breeding. This study was conducted to identify and group rice varieties based on agro-morphological characteristics such as plant height, panicle length, number of tillers, culm length, leaf length, leaf width, leaf pigments and flag leaf angles. Using these parameters, statistical analysis classified a total of 243 rice varieties bred in Korea into four groups. Most rice varieties did not exhibit anthocyanin pigments on the leaves particularly on the first leaf, leaf blade, leaf sheath and auricle, except for varieties classified as black rice. Results of phylogenetic and principal component analysis (PCA) indicated that these varieties formed three largely distinct clusters according to their ecotype and morphological differentiation. This result would be useful in rice varietal identification for the protection of breeders’variety rights.
        4.
        2015.07 서비스 종료(열람 제한)
        The roots of Platycodon grandiflorum are known as traditional medicine, has been extensively used since ancient times as a therapeutic to treat cold, cough and asthma in Korean traditional medications. This study was conducted in order to profile proteins from the hormone induced diploid and tetraploid roots using high throughput proteome approach. Two dimensional gels stained with CBB, a total of 64 differential expressed proteins were identified from the diploid root using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 20 differential expressed protein spots (≥ 2-fold) were analyzed using MALDI-TOF-TOF mass spectrometry whereas a total of 13 protein spots were up regulated and 7 protein spots were down-regulated. However, in the case of tetraploid root, a total of 78 differential expressed proteins were identified from tetraploid root of which a total of 28 differential expressed protein spots (≥ 2-fold) were analyzed by mass spectrometry whereas a total of 16 protein spots were up regulated and a total of 12 protein spots were down-regulated. However, proteins identified using iProClass databases revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding, oxidoreductase activity, transporter activity and isomers activity. The exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.
        5.
        2015.07 서비스 종료(열람 제한)
        An increasing preference for good eating quality of rice among consumers has become one of the important considerations in rice breeding. Amylose content is a leading factor affecting eating quality of rice. Amylose composition is determined by the relative activity of soluble starch synthase (SSS) and granule-bound starch synthase (GBSS). This study focused on modifying the expression of SSSI gene which is responsible for amylopectin and amylose synthesis in rice by using RNA interference (RNAi) technology. The transgenic rice plants showed various amylose content in rice grains. Favorable rice lines were selected according to genomic PCR, transgene expression and amylose contents analysis. A semi-quantitative RT-PCR was carried out to determine the expression level of SSSI gene after flowering of transgenic rice and wild type. Down-regulation of SSSI gene in transgenic plants was evident in the decreasing expression in rice grains. Accordingly, scanning electron microscopy (SEM) analysis revealed uniform size with smooth curves starch granules in down-regulation rice lines, in contrast with the non-uniform granules in wild type. Results indicated that RNAi-SSSI transgenic lines produced low amylose contents that fell between glutinous and non-glutinous rice. This study showed that down-regulation of endogenous SSSI may improve the eating quality in rice.
        6.
        2015.07 서비스 종료(열람 제한)
        The International Union for the Protection of New Varieties of Plants (UPOV) promotes an effective system of plant variety protection and encourages the development of new varieties of plants. International convention was initiated to standardized the system efforts and strengthen the policy. This study was conducted to establish a database for rice identification using morphological characters which include number of tillers and panicle per plant, spikelets per panicle, yield, plant maturity, height, leaf pigments, flag leaf angles, and rice bran. The whole rice population was grouped into three based on leaf angles, majority members of which retained the flag leaf angle-character until maturity stage. Most rice accessions did not exhibit anthocyanin pigments on the leaves particularly on the first leaf, leaf blade, leaf sheath and auricle, except for varieties classified as black rice. In the case of grain, many accessions produced secondary branching, and showed no awn. For agronomic traits, productive tiller and panicle per plant were higher in early flowering varieties, while spikelets per panicle and ripened grain were higher in late flowering varieties, and yield was higher in medium flowering varieties. All data were then pooled for cluster analysis which revealed three major independent clusters and four minor clusters.
        7.
        2015.07 서비스 종료(열람 제한)
        Cysteine protease (CP) is one of the well-studied proteolytic enzymes in plants. This class of protease has been implicated in various physiological aspects of developmental stages in plants including seed germination, senescence, and disease immunity. A handful of studies assigned plants cysteine protease in different molecular battlefield under a few selected pathosystems, and initially extricated complex molecular mechanism of resistance. However, its potential use as an agent of resistance to diseases in rice has never been explored. This study demonstrates the function of CP specifically in rice - Xanthomonas oryzae pv. oryzae (Xoo) pathosystem. The CP -encoding full-length cDNA was cloned from Brassica rapa and transformed into japonica rice cv. ‘Gopumbyeo’. The gene was overexpressed under the control of CaMV35S promoter in pFLC vector. Blast analysis of the conserved domain of the gene confirmed its affinity to Peptidase_CIA family. RT-PCR analysis showed that the gene was constitutively expressed in all tissues tested. Regulation of rice resistance through cysteine protease activity is evident in overexpression lines which exhibited an enhanced resistance to four Korean Xoo isolates. Further analyses will be carried out to uncover the specific role of CP in rice-Xoo interaction.
        8.
        2015.07 서비스 종료(열람 제한)
        Since global climate changes drastically, pre-harvest sprouting (PHS) is expected to pose serious problems in rice production. CBL-interacting serine/threonine protein kinases (CIPKs) have been implicated to play important role in regulating various abiotic stresses such as cold, salinity and drought. In this study, to understand the function of this gene under pre-harvest sprouting in rice, a cDNA clone encoding CBL-interacting protein kinase 15 was isolated from rice flowers. We constructed a recombinant vector carrying the CIPK15 under the control of the CaMV 35S promoter and Tnos terminator and transformed into rice using Agrobacterium tumefaciens. Insertion of the gene was verified in transformants using HPT resistance test and genomic PCR. Transcriptional profiling using tissues of wild type, Gopum, revealed expression of the gene in whole plant tissues with level of expression highest in the seeds suggesting possible role in dormancy. Comparative expression analysis of the gene in transgenic and wild type through semi-quantitative RT-PCR and real-time PCR showed higher expression in transgenic rice lines. Moreover, screening in the mist chamber showed overexpression lines that were resistant to the PHS. This result suggests the involvement of CIPK15 in the regulation of pre-harvest sprouting.
        9.
        2014.07 서비스 종료(열람 제한)
        Secondary plant metabolites undergo several modification reactions, including glycosylation and physiological functions. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, a UDP-glucosyltransferase cDNA was isolated from Brassica rapa hereinafter referred to as BrUGT. It has a full-length cDNA of 1,236 bp that contains a single open reading frame of 834 bp which encodes a polypeptide of 277 amino acid residues with a calculated mass of 31.19 kDa. BLASTX analysis hits a catalytic domain of glycos_transf_1 super family (c112012) that belongs to the glycosyltransferases group 1 with tetratricopeptide (TPR) regions. UGT gene expression analysis showed high mRNA transcripts in pistil, followed by petal, seed and calyx of flower in Brassica rapa. Furthermore, we constructed a recombinant pFLCIII vector carrying the BrUGT gene under the control of ubiquitin promoter and NOS terminator and transformed into rice using Agrobacterium tumefaciens. The UGT overexpressing rice lines were then characterized at the physiological and molecular levels. To further understand the biological function of BrUGT, transcriptional profiling of the gene in transgenic rice lines under cold, salt, PEG, H2O2, ABA and drought stress condition is underway.
        10.
        2014.07 서비스 종료(열람 제한)
        Fortification with vitamins in crops like rice is a continuing endeavor for geneticists and rice breeders. Tryptophan is one of the essential amino acids needed in human diet. In this study, we developed rice mutant lines using ethyl methane sulfonate (EMS) treatment in Korean cv. Donganbyeo and candidate rice lines were selected by insensitivity to the tryptophan analog, 5-methyltryptophan. One of the mutants has a 20-25 fold higher tryptophan level in mature seeds than wild type. To identify the mutations in anthranilate synthase genes, OASA1 and OASA2 sequences were generated. Moreover, mRNA expression levels of tryptophan biosynthesis related genes were examined. To further qualify the tryptophan fortification in rice, comparative assessment of cooking and eating quality was conducted with mutant lines and wild type. The moisture, viscosity, taste quality, protein content, amylose content and amino acid composition were similar with wild type. However, tryptophan contents in the mutant lines were higher than wild type as we targeted. The mutation present in AS gene of 5MT resistant rice may prove useful for the generation of crops with increased tryptophan contents and the mutation differences in AS sequences can be used for selection of mutant lines with high tryptophan level from large population.
        11.
        2014.07 서비스 종료(열람 제한)
        There is a great consideration on rice eating quality aside from improving its tolerance to various stresses. High yielding and pest and disease tolerant rice is highly desirable but it is more commercially important if it also has a high eating quality. There are various factors contributing to the good eating quality of rice. This study focuses on modifying the expression of GBSS1 genes which are responsible for amylopectin and amylose synthesis in rice by using RNAi and antisense techniques. We have developed 40 transgenic plants with RNAi-GBSS1 gene and 60 transgenic lines with antisense-GBSS1 gene. The transgenic plants show diverse amylose contents in rice seed. We selected candidate lines according to PCR, RNA expression and amylose contents. A semi-quantitative RT-PCR was carried out to measure the expression level of GBSS1 gene at several time points after the flowering of transgenic plants. The expression level of GBSS1 gene in rice grains decreases over time and the mRNA expression among the transgenic plants were lower compare to its wild type. In the SEM analysis, the starch granule of wild type Gopumbyeo has very large structures accompanied with small ones around the area. However, the starch structures in transgenic plants were smaller and more uniform in size and shape throughout the viewing area
        12.
        2014.07 서비스 종료(열람 제한)
        An increasing preference for good eating quality of rice among consumers has become one of the important considerations in rice breeding. Amylose content of starch is one of the important factors of rice eating quality. Amylose composition is determined by the relative activity of soluble starch synthase (SSS) and granule-bound starch synthase (GBSS). This study focuses on modifying the expression of SSS1 gene which is responsible for amylopectin and amylose synthesis in rice by using RNA interference (RNAi) and antisense technology. The transgenic rice plants showed various amylose content (9-17%) in rice seed. Candidate rice lines were selected according to PCR, RNA expression and amylose contents analyses. A semi-quantitative RT-PCR was carried out to determine the expression level of SSS1 gene at several time points after the flowering of transgenic plants. Downregulation of SSS1 gene in transgenic rices was evident in the decreasing expression in rice grains over time. Accordingly, SEM micrographs analysis revealed uniform size with smooth curves starch granules in downregulation rice lines, in contrast with the non-uniform granules in wild type.
        13.
        2014.07 서비스 종료(열람 제한)
        UDP-glucose 4-epimerase (UGE) catalyzes the reversible conversion of UDP-glucose to UDP-galactose. To understand the biological function of UGE from Brassica rapa, the gene hereinafter referred to as was cloned and overexpressed into Japonica rice cv. Gopum. Transcriptional profiling showed that the is specific to stem of rice plant. Morphological evaluation of the overexpression lines revealed altered phenotype characters particularly in panicle length, number of productive tillers and filled spikelets which account for an increase in yield. This remarkable agronomic performance was ascribed to higher photosynthetic rate complemented with higher CO2 assimilation. Interestingly, BrUGE1 did not only improve plant fitness under optimal condition but also under water deficit stress. The enhanced drought tolerance may be due to the induction of soluble sugar which may act as osmolyte to compensate dehydration during drought stress.
        14.
        2014.07 서비스 종료(열람 제한)
        Since global climate changes drastically, pre-harvest sprouting (PHS) is expected to pose serious problems in rice production. CBL-interacting serine/threonine protein kinases (CIPKs) have been implicated to play important role in regulating various abiotic stresses such as cold, salinity and drought. In this study, to understand the function of this gene under pre-harvest sprouting in rice, a cDNA clone encoding CBL-interacting protein kinase 15 (CIPK15) was isolated from rice flowers. This gene is 2,818 bp long with 1,332 bp coding region that encodes a polypeptide of 443 amino acids. We constructed a recombinant vector carrying the OsCIPK15 under the control of the CaMV 35S promoter and Tnos terminator and transformed into rice using Agrobacterium tumefaciens. Insertion of the gene was verified in transformants using HPT resistance test and genomic PCR. Transcriptional profiling using tissues of wild type, Gopum, revealed expression of the gene in whole plant tissues with level of expression highest in the seeds suggesting possible role in dormancy. Comparative expression analysis of the gene in transgenic and wild type through semi-quantitative RT-PCR and real-time PCR showed higher expression in transgenic rice lines. Moreover, screening in the mist chamber showed overexpression lines that were resistant to the PHS. This result suggests the involvement of OsCIPK15 in the regulation of pre-harvest sprouting.
        15.
        2014.07 서비스 종료(열람 제한)
        In spite of the overwhelming number of cysteine proteases in plants, only a few were substantially investigated. Papain-like cysteine proteases (PLCPs) are commonly implicated to disease immunity in some key pathosystems in plants, such as in tomato – Cladosporium fulvum, potato/tomato – phytopthora infestans, and Arabidopsis – Ralstonia solanacearum, among the few others. This study demonstrates the function of cysteine protease gene cloned form Brassica rapa (BrCP) related to resistance to Xanthomonas oryzae pv. oryzae in transgenic rice lines. The cysteine protease-encoding full-length cDNA was identified and characterized using web-based tools. The gene is 2,267 bp in size with an open reading frame of 1,365 bp that encodes predicted polypeptide of 455 amino acids. Blast analysis of the conserved domain of the gene confirmed its affinity to Peptidase_CIA family. Full-length cDNA of PLCP in Brassica rapa was then cloned and co-overexpressed in rice with HPT marker. Introgression of the gene was confirmed in the transformants through genomic PCR assay. RT-PCR analysis showed that the gene was constitutively expressed and present in all tissues. The overexpression rice lines exhibited an enhanced resistance when screened with four Korean Xoo isolates.
        16.
        2013.07 서비스 종료(열람 제한)
        Glutamine synthetase (GS) is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine. Exposure of plants to cadmium (Cd) has been reported to decrease GS activity in maize, pea, bean, and rice. To better understand the function of the GS gene under Cd stress in rice, we constructed a recombinant pART vector carrying the GS gene under the control of the CaMV 35S promoter and OCS terminator and transformed using Agrobacterium tumefaciens. We then investigated GS overexpressing rice lines at the physiological and molecular levels under Cd toxicity. The GS activity along with mRNA expression were found higher in transgenic than in wild type plants. And this is validated by the low malondialdehyde contents observed 10 days after treatment. GS overexpression in rice resulted in the modulation of expression of enzymes responsible for membrane peroxidation, which may result in the sudden death of plants. Our results thus describe the features of a transgenic rice plants with enhanced tolerance to Cd toxicity.
        17.
        2013.07 서비스 종료(열람 제한)
        Amylopectin composition is determined by the relative activity of soluble starch synthase (SSS) and granule-bound starch synthase (GBSS). Soluble starch synthase and starch branching enzymes are major determinants for the synthesis of amylopectin while GBSS1 is responsible for amylose synthesis in vivo. The formers are made of linear and branched molecules and the latter is composed of highly branched molecules. To increase the palatability of rice, down-regulation of amylose synthesis by antisense and RNA interference (RNAi) could be excellent and powerful tools for controlling the starch composition which is responsible for grain eating quality. The goal of this study is to generate breeding lines with lower amylose content relative to its wild type. This study also reports the results of the two down-regulating technology in lowering the amylose content of rice grain. Furthermore, this study elucidates the effect of using antisense and RNAi for SSS1 and GBSS1.
        18.
        2013.07 서비스 종료(열람 제한)
        High temperature impediment in developing stages of crops has been occurred due to the impact of global warming. Rice production is notable to be sensitive to increasing environmental temperature and grain filling temperatures are already approaching threatening levels in many countries with rice cultivation. Recent proteomic analyses exposed impulsive changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature (HT) stress in rice ripening period enhances damaged (chalky) grains which have loosely compacted shape starch granules. We carried out two-dimensional gel electrophoresis to analyze protein profiles during grain filling and different developmental stages of rice seed maturation. Proteins were separated from the fertilized seeds (seeds from 7 days and 21 days after fertilization) and seed maturation stage using IEF in the first-dimension and SDS-PAGE in the second dimension along with MALDI-TOF mass spectrometry. More than 1,000 protein spots were detected on a two-dimensional gel electrophoresis. A total of 120 different protein spots out of 140 protein spots were identified by MALDI-TOF and nano LCQ-TOF mass spectrometer. The identified proteins were categorized into six (6) different groups according to their expression patterns during grain filling and seed maturation. Some proteins were confirmed during seed development stages such as cytoplasmic malate dehydrogenase, whereas others were appeared at a specific stage like putative subtilisin-like protease, germin-like, seed allergenic proteins. Furthermore, the chalking mechanism of rice grain under the HT stress could be discussed in terms of grain starch glycome, transcriptome, and proteome.
        19.
        2013.07 서비스 종료(열람 제한)
        UDP-glucose 4-epimerase catalyzes the reversible conversion of UDP-glucose to UDP-galactose. The gene, named BrUGE1, isolated from a Chinese cabbage composes of a total length of 1,328 bp that contains a single open reading frame (ORF) of 1,056 bp which encodes a polypeptide of 351 amino acid residues with a calculated mass of 39.0 kDa. Expression analysis showed that BrUGE1 is tissue specific and highly expressed in stem of rice plant. Interestingly, BrUGE1 mRNA was highly accumulated by drought stress with significantly higher amount of soluble sugar. Morphological evaluation showed an increase in yield and yield components compared to the wild type. Moreover, a better growth performance on galactose as well as higher UGE1 expression was observed in transgenic rice lines than in wild type. In the Ubi-1::BrUGE1 lines, the increase of UGE1 expression was apparently sufficient to overcome the toxic effects of galactose. Taken together, the Ubi-1::BrGUE1 rice lines increased yield probably by increasing the rate of filled grains. The enhanced drought tolerance may be due to the induction of soluble sugar which may act as osmolyte to compensate dehydration during drought stress.
        20.
        2013.07 서비스 종료(열람 제한)
        Bacterial blight is a serious problem of rice in irrigated and rainfed lowlands. It is caused by Xanthomonas oryzae pv. oryzae (Xoo) which is represented by many pathotypes, making it difficult to control. Plant proteases are important players in immunity acting either in the execution of attack, in signaling cascade or in perception of invader. This study demonstrates the response of cysteine protease (CP) upon interaction with the pathogen. The cysteine protease encoding full-length cDNA was identified and characterized using web-based tools. Conserved domain of the gene revealed its affinity to Peptidase_CIA family. The full-length cDNA of CP in Brassica rapa was then cloned and overexpressed in rice. Insertion of gene was verified in the transformants through PCR assay. Spatiotemporal expression of the gene was performed in transgenic rice. To evaluate the resistance of CP-overexpression lines to Xoo, transgenic plants were inoculated with two races of Xoo. In planta analysis of enzymatic activity of CP was also performed before and after infection by the pathogen.
        1 2