High-efficiency phosphorescent organic light emitting diodes using TCTA-TAZ as a double host and Ir(ppy)3 as a dopant were fabricated and their electro-luminescence properties were evaluated. The fabricated devices have the multi-layered organic structure of 2-TNATA/NPB/(TCTA-TAZ) : Ir(ppy)3/BCP/SFC137 between an anode of ITO and a cathode of LiF/AL. In the device structure, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] were used as a hole injection layer and a hole transport layer, respectively. BCP [2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline] was introduced as a hole blocking layer and an electron transport layer, respectively. TCTA [4,4',4"-tris(N-carbazolyl)-triphenylamine] and TAZ [3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole] were sequentially deposited, forming a double host doped with Ir(ppy)3 in the [TCTA-TAZ] : Ir(ppy)3 region. Among devices with different thickness combinations of TCTA (50 Å-200 Å) and TAZ (100 Å-250 Å) within the confines of the total host thickness of 300 Å and an Ir(ppy)3-doping concentration of 7%, the best electroluminescence characteristics were obtained in a device with 100 Å-think TCTA and 200 Å-thick TAZ. The Ir(ppy)3 concentration in the doping range of 4%-10% in devices with an emissive layer of [TCTA (100 Å)-TAZ (200 Å)] : Ir(ppy)3 gave rise to little difference in the luminance and current efficiency.