We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [TCTA/TCTA1/3TAZ2/3/TAZ] : Ir(ppy)3 were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of (TCTA1/3TAZ2/3) : Ir(ppy)3 and (TCTA/TAZ) : Ir(ppy)3. The current density, luminance, and current efficiency of the a device with an emission layer of (80Å-TCTA/90˚Å-TCTA1/3TAZ2/3/130Å-TAZ) : 10%-Ir(ppy)3 were 95 mA/cm2, 25000 cd/m2, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of 400 cd/m2. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of 15000 cd/m2, the current efficiency of the a device with an emission layer of (80Å-TCTA/90Å-TCTA1/3TAZ2/3/130Å-TAZ) : 10%-Ir(ppy)3 was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of (300Å-TCTA1/3TAZ2/3) : 10%-Ir(ppy)3 and (100Å-TCTA/200Å-TAZ) : 10%-Ir(ppy)3, respectively.
High-efficiency phosphorescent organic light emitting diodes using TCTA-TAZ as a double host and Ir(ppy)3 as a dopant were fabricated and their electro-luminescence properties were evaluated. The fabricated devices have the multi-layered organic structure of 2-TNATA/NPB/(TCTA-TAZ) : Ir(ppy)3/BCP/SFC137 between an anode of ITO and a cathode of LiF/AL. In the device structure, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] were used as a hole injection layer and a hole transport layer, respectively. BCP [2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline] was introduced as a hole blocking layer and an electron transport layer, respectively. TCTA [4,4',4"-tris(N-carbazolyl)-triphenylamine] and TAZ [3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole] were sequentially deposited, forming a double host doped with Ir(ppy)3 in the [TCTA-TAZ] : Ir(ppy)3 region. Among devices with different thickness combinations of TCTA (50 Å-200 Å) and TAZ (100 Å-250 Å) within the confines of the total host thickness of 300 Å and an Ir(ppy)3-doping concentration of 7%, the best electroluminescence characteristics were obtained in a device with 100 Å-think TCTA and 200 Å-thick TAZ. The Ir(ppy)3 concentration in the doping range of 4%-10% in devices with an emissive layer of [TCTA (100 Å)-TAZ (200 Å)] : Ir(ppy)3 gave rise to little difference in the luminance and current efficiency.