Eu3+ -doped Y2O3 red phosphor was synthesized in a flux method using the chemicals Y2O3, Eu2O3,H3BO3 and BaCl2·2H2O. The effect of a flux addition on the preparation of Y2O3:Eu3+ red phosphor used asa cold cathode fluorescence lamp was investigated. H3BO3 and BaCl2·2H2O fluxes were used due to theirdifferent melting points. The crystallinity, thermal properties, morphology, and emission characteristics weremeasured using XRD, TG-DTA, SEM, and a photo-excited spectrometer. Under UV excitation of 254nm, Eu2O33.7mol% doped Y2O3 exhibited a strong narrow-band red emission, peaking at 612nm. From this result, thephosphor synthesized by firing Y2O3 with 3.7mol% of Eu2O3, 0.25mol% of H3BO3 and 0.5mol% of BaCl2·2H2Ofluxes at 1400oC for 2 hours had a larger particle size of 4µm on average compared to the phosphor of theH3BO3 flux alone. In addition, a phosphor synthesized by the two fluxes together had a rounder corner shape,which led to the maximum emission intensity.