In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at 1500 oC, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at 1300~1500 oC with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.
In this study, we synthesize silica-core gold-satellite nanoparticles (SGNPs) for the surface-enhanced Raman scattering (SERS) based sensing applications. They consist of gold satellite nanoparticles (AuNPs) fixed on the silica core nanoparticles, which sizes of AuNPs can be tunned by varying the amount of reactants (growth solution and reducing agent). Their surface plasmon resonance (SPR) properties were characterized by using UV-vis spectroscopy, showing that the growth of AuNPs on silica cores leads to the light absorption in the longer wavelength region. Furthermore, the size increase of AuNPs exhibited the dramatic change in SERS activity due to the formation of hot spots. The optimized SGNPs showing enhancement factor ~3.8x106 exhibited a detection limit of rhodamine 6G (R6G) as low as 10-8M. These findings suggest the importance of size control of SGNPs and their SPR properties to develop highly efficient SERS sensors.
Flexible polyurethane/clay porous nanocomposite foams were synthesized using natural and organically modified montmorillonite clays such as bentonite, closite 10A and closite 30B. The content of nanoclays was varied from 1 to 5 wt% of polyol. Dispersion of clay in Polyurethane(PU) matrix was investigated by X-ray diffraction(Cu-Kα rays of wavelength 1.54Å) using an X-ray diffractometer. Also, we determined that the thermal resistance of PU foam increased with added clay, compared to that of pure PU foam. The cell size and the fraction of open cells of the precursor foam were controlled by the addition of clay to the polyurethane foam. Modified clays were found to be more efficient cell openers than the unmodified clay. In addition, the tensile strength and elongation of the polyurethane/clay porous nanocomposites were examined. Increasing clay content increased the mechanical properties of the composites, such as tensile strength, and elongation at break. However, increasing the content over 5 wt% deteriorated the properties of the composites. We found that the nanofillers(bentonite, closite 10A and closite 30B) improved the thermal stability of the nanocomposite foam. The nanocomposite foam containing 3 wt% of closite 30B exhibited the best tensile strength and thermal stability.
In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at 700˚C and 800˚C for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At 700˚C, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at 800˚C, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of Al2O3, a diffusion resistance layer, is remarkably hindered by a relative decrease of the α volume fraction. This is because Fe addition increases the volume fraction of β phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.
Hydroxyapatite (HAp) powders with different crystallinities were synthesized at various calcination temperatures through the co-precipitation of Ca(OH)2 and H3PO4. The degradation behavior of these HAp powders with different crystallinities was assessed in a simulated body fluid solution (SBF) for 8 weeks. Below 800˚C, the powders were nonstochiometric HAp, and the single HAp phase was successfully synthesized at 800˚C. The degree of crystallinity of the HAp powders increased with an increasing calcination temperature and varied in a range from 39.6% to 92.5%. In the low crystallinity HAp powders, the Ca and P ion concentrations of the SBF solution increased with an increasing soaking time, which indicated that the low crystallinity HAp degraded in the SBF solution. The mass of the HAp powders linearly decreased with respect to the soaking time, and the mass loss was higher at lower crystallinities. The mass loss ranged from 0.8% to 13.2% after 8 weeks. The crystallinity of the HAp powders increased with an increasing soaking time up to 4 weeks and then decreased because of HAp degradation. The pH of the SBF solution did not change much throughout the course of these experiments. These results suggested that the crystallinity of HAp can be used to control the degradation.
Eu3+ -doped Y2O3 red phosphor was synthesized in a flux method using the chemicals Y2O3, Eu2O3,H3BO3 and BaCl2·2H2O. The effect of a flux addition on the preparation of Y2O3:Eu3+ red phosphor used asa cold cathode fluorescence lamp was investigated. H3BO3 and BaCl2·2H2O fluxes were used due to theirdifferent melting points. The crystallinity, thermal properties, morphology, and emission characteristics weremeasured using XRD, TG-DTA, SEM, and a photo-excited spectrometer. Under UV excitation of 254nm, Eu2O33.7mol% doped Y2O3 exhibited a strong narrow-band red emission, peaking at 612nm. From this result, thephosphor synthesized by firing Y2O3 with 3.7mol% of Eu2O3, 0.25mol% of H3BO3 and 0.5mol% of BaCl2·2H2Ofluxes at 1400oC for 2 hours had a larger particle size of 4µm on average compared to the phosphor of theH3BO3 flux alone. In addition, a phosphor synthesized by the two fluxes together had a rounder corner shape,which led to the maximum emission intensity.
Porous HAp with three-dimensional network channels was prepared in a polymer foam process using a in-situ formation. HAp/polyol with various HAp solid contents was formed with an addition of isocyanate. Under all conditions, the obtained porous HAp had pore sizes ranging 50 μm to 250 μm. The influence of the HAp content on the physical and mechanical properties of porous HAp scaffolds was investigated. As the solid content increased, the porosity of the porous HAp decreased from 79.3% to 77.9%. On the other hand, the compressive strength of the porous HAp increased from 0.7 MPa to 3.7 MPa. With a HAp solid content of 15 g, the obtained porous HAp had physical properties that were more suitable for scaffolds compared to other conditions.
Porous poly(e-caprolactone) (PCL) scaffolds were fabricated by salt leaching method. The PCL scaffolds were treated with aqueous NaOH for 0h, 2h, 4h, 8h, and 12h at 40˚C. The NaOH-treated PCL scaffolds were dipped in CaCl2 and K2HPO4·3H2O solution alternately three times to induce apatite nuclei onto the surface of the scaffolds. The NaOH-treated PCL scaffolds were immersed into SBF solution for 1day to grow the apatite. The apatite formation were investigated as a fuction of NaOH treatment time. The hydrophilicty and surface area of the PCL scaffolds were increased with NaOH-treatment time. The NaOH-treated PCL scaffolds were successfully formed a dense and uniform bone-like apatite layer after immersion for 1 day in SBF solution.
The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to . The hot extruded Al-Si alloy shows the average Si particle size of less than . After heat-treatment, the average particle size was increased from 2 to . Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.
Wear behaviors of gas atomized and extruded Al-Si alloys were investigated using the dry sliding wear apparatus. The wear tests were conducted on Al-Si alloy discs against cast iron pins and vice versa at constant load of 10N with different sliding speed of 0.1, 0.3, 0.5m/s. In the case of Al-Si alloy discs slid against the cast iron pins, the wear rate slightly increased with increasing the sliding speed due to the abrasive wear occurred between Al-Si alloy discs and cast iron pins. Conversely, in the case of cast iron discs against Al-Si alloy pins, the wear rate decreased with increasing the sliding speed up to 0.3m/s. However, the wear rate increased with increasing the sliding speed from 0.3m/s to 0.5m/s. It could be due to adhesive wear behavior and abrasive wear behavior_between cast iron discs and Al-Si alloy pins.
Nickel powders were synthesized by the hydrazine reduction of nickel chloride solution containing ammonia in DEA solutions. The size distribution of nickel powders were investigated as a function of ammonia concentration, hydrazine concentration and the mixed composition ratio of diethanolammine (DEA) and triethanolammine (TEA). Nickel powders with the size in submicron range were obtained at for 45 minutes by hydrazine reduction of nickel chloride solution in DEA solutions. The hydrazine concentrations showed significant effects on the particle size and shape distribution of nickel powders under molar ratio of 2.0 condition. As the mixed volume ratio of TEA and DEA increased, nickel powders with relatively larger particle size and low agglomeration were obtained. Nickel powders with particle size in the ranged from 0.4 to were obtained at the 50 of TEA.
Al2O3/ZrO2 비수성 현탁액의 분산과 레올로지에 미치는 methyl isobutyl ketone (MIBK) /ethanol (EtOH) 용매혼합의 영향을 침전밀도, 점도를 측정함으로써 조사하였다. 분산제 'Hypermer' KD-1이 첨가된 다량의 MIBK를 함유하는 용매 (≥60vol%)에서 Al2O3와 ZrO2 입자의 침전밀도는 증가하였다. 80MIBK/20EtOH(vol%)에서 ball milling한 현탁액이 좁고 unimodal한 입자크기분포를 나타내었다. 모든 현탁액은 의가소성유동을 나타내었으나 shear thinning은 Al2O3/ZrO2의 혼합비, MIBK/EtOH의 혼합비에 따라서 다소 다르게 거동하였다. 순수한 MIBK를 사용한 Al2O3(<300 s-1 ) 및 ZrO2(<3000 s-1 ) 현탁액은 주어진 전단속도범위내에서 가장 강한 shear thinning을 나타내었다. 동일한 용매 (80MIBK/20EtOH, vol%)를 사용한 경우의 shear thinning은 Al2O3/ZrO2의 혼합비에 거의 의존하지 않았다.