The Charge Trap Flash (CTF) memory device is a replacement candidate for the NAND Flash device. In this study,Pt/Al2O3/La2O3/SiO2/Si multilayer structures with lanthanum oxide charge trap layers were fabricated for nonvolatile memorydevice applications. Aluminum oxide films were used as blocking oxides for low power consumption in program/erase operationsand reduced charge transports through blocking oxide layers. The thicknesses of SiO2 were from 30Å to 50Å. From the C-Vmeasurement, the largest memory window of 1.3V was obtained in the 40Å tunnel oxide specimen, and the 50Å tunnel oxidespecimen showed the smallest memory window. In the cycling test for reliability, the 30Å tunnel oxide sample showed an abruptmemory window reduction due to a high electric field of 9~10MV/cm through the tunnel oxide while the other samples showedless than a 10% loss of memory window for 104cycles of program/erase operation. The I-V measurement data of the capacitorstructures indicated leakage current values in the order of 10-4A/cm2 at 1V. These values are small enough to be used in non-volatile memory devices, and the sample with tunnel oxide formed at 850oC showed superior memory characteristics comparedto the sample with 750oC tunnel oxide due to higher concentration of trap sites at the interface region originating from the roughinterface.