High strength sheet steels for automobile are seriously compromised by hydrogen embrittlement. This issue has been continuously studied, but the field of interest, which lies between microstructural characteristics and hydrogen behavior with hydrogen charging, has not yet been thoroughly investigated. This study was done to investigate the behavior of hydrogen according to the hydrogen volume fraction on 590MPa grade DP steels, which are developed under hydrogen charging conditions as high strength sheet steels for automobiles. The penetration depths and the mechanical properties, according to charging conditions, were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. It was found that the amount of hydrogen trapping in 590MPa DP steels was related to the austenite volume fraction. It was confirmed that the distribution of micro-hardnesses according to the depth of the subsurface zone under the free surface showed the relationship of the depth of the hydrogen saturation between the charging conditions.