Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process
The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was 45μm; however, it became 6.3μm after one cycle, 1.5μm after three cycles, and 0.95μm after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component 001<110> mainly developed in the surface region, while the rolling texture components 011<211> and 112<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; 001<110> component mainly developed in AA1050 and 111<110> component in AA6061.