검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2023.11 구독 인증기관·개인회원 무료
        One of the options for spent fuel dry storage systems is to store them in canisters using metal or concrete casks close to shore. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. A canister made of austenitic stainless steel has several welding lines on the wall and lid, which are generated during the welding process and have high residual tensile stress. The interaction between the austenitic stainless steel and the chloride atmosphere generated from the sea creates detrimental conditions leading to chloride induced stress corrosion cracking (CISCC) in the canister. The corrosion integrity of the canister in the concrete cask is very important because the canister is sealed and used for a long period of time. In order to evaluate such soundness, an accelerated test capable of simulating the CISCC crack propagation phenomenon of the canister weld is required. In this study, a test device for performing the CISCC simulation test was constructed using the DCPD device. The direct current potential drop (DCPD) technique is a widely accepted method of monitoring crack initiation and growth in controlled laboratory tests. Total 10 types of test specimens with varying welds, base metal, salinity and stress were selected and a sealed chamber with DCPD test apparatus were designed and constructed to evaluate them. The chamber for CISCC simulation was manufactured as a sealed with a solution containing 10% MgCl2. A 1/2 CT specimen with precracked pre-cracks was loaded into the prepared container, and gauze was attached from the bottom for smooth delivery to the specimen to facilitate penetration of chloride. After the test, the measured DCPD data were correlated with Electron Back scattered Diffraction (EBSD) data.
        3.
        2014.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural evolution in the thickness direction of an oxygen free copper processed by accumulative rollbonding (ARB) is investigated by electron back scatter diffraction (EBSD) measurement. For the ARB, two copper alloy sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked and roll-bonded by about 50% reduction rolling without lubrication at an ambient temperature. The bonded sheet is then cut to the two pieces of the same dimensions and the same procedure was repeated on the sheets up to eight cycles. The specimen after 1 cycle showed inhomogeneous microstructure in the thickness direction so that the grains near the surface were finer than those near the center. This inhomogeneity decreased with an increasing number of ARB cycles, and the grain sizes of the specimens after 3 cycles were almost identical. In addition, the aspect ratio of the grains decreased with an increasing number of ARB cycles due to the subdivision of the grains by shear deformation. The fraction of grains with high angle grain boundaries also increased with continuing process of the ARB so that it was higher than that of the low angle grain boundaries in specimens after 3 cycles. A discontinuous dynamic recrystallization occurred partially in specimens after 5 cycles.
        4,000원