The hydrogen storage properties of pure MgH2 were studied and compared with those of pure Mg. At the first cycle,pure MgH2 absorbed hydrogen very slowly at 573 K under 12 bar H2. The activation of pure MgH2 was completed after threehydriding-dehydriding cycles. At the 4th cycle, the pure MgH2 absorbed 1.55wt% H for 5 min, 2.04wt% H for 10 min, and3.59wt% H for 60 min, showing that the activated MgH2 had a much higher initial hydriding rate and much larger Ha (60min), quantity of hydrogen absorbed for 60 min, than did activated pure Mg. The activated pure Mg, whose activation wascompleted after four hydriding-dehydriding cycles, absorbed 0.80wt% H for 5 min, 1.25wt% H for 10 min, and 2.34wt%H for 60 min. The particle sizes of the MgH2 were much smaller than those of the pure Mg before and after hydriding-dehydriding cycling. The pure Mg had larger hydrogen quantities absorbed at 573K under 12 bar H2 for 60 min, Ha (60 min),than did the pure MgH2 from the number of cycles n=1 to n=3; however, the pure MgH2 had larger Ha (60 min) than didthe pure Mg from n=4 to n=6.