검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples’ compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa2CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples’ well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample’s mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.
        4,000원
        2.
        2023.05 구독 인증기관·개인회원 무료
        Crystallographic properties of Ni-based alloys such as alloys 600, 617, and Hastelloy N, which are a candidate to be used as structural materials in Molten Salt Reactor (MSR), were studied in the temperature range of 25-1,000°C using high-temperature X-ray diffraction (HT-XRD) under an Ar atmosphere. We found that face-centered cubic Ni crystal structure at room temperature was started to be changed over 600°C in all Ni-based samples. However, the appearance of changing diffraction patterns over 600°C was different for all samples. In addition, we observed the increase in the lattice constant along the a-axis upon heating in all specimens, determined by Pawley refinement of HTXRD data.
        3.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin method. When X-rays were used the relationship of sin measured on the surface layer of the processing metal did not show linearity when the sin method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray,  becomes a sin function. Since  cannot be used as a constant, the relationship in sin cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren’s diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lately, Raman spectroscopy has become powerful tool for quality assessment of graphene analogues with identification of intensity ratio of Raman active D-band and G-band ( ID/IG ratio) as a vital parameter for quantification of defects. However, during chemical reduction of graphitic oxide (GrO) to reduced GrO (RGrO), the increased ID/ IG ratio is often wrongly recognized as defect augmentation, with “formation of more numerous yet smaller size sp2 domains” as its explanation. Herein, by giving due attention to normalized peak height, full-width half-maxima and integrated peak area of Raman D- and G-bands, and compliment the findings by XRD data, we have shown that in-plane size of sp2 domains actually increases upon chemical reduction. Particularly, contrary to increased ID/ IG ratio, the calculated decrease in integrated peak area ratio ( AD/AG ratio) in conjunction with narrowing of D-band and broadening of G-band, evinced the decrease in in-plane defects. Finally, as duly supported by reduction induced broadening of interlayer-spacing characteristic XRD peak and narrowing of ~ 43° centered XRD hump, we have also shown that the sp2 domains actually expands in size and the observed increase in ID/ IG ratio is indeed due to increase in across-plane defects, formed via along-the-layer slicing of graphitic domains.
        4,000원
        10.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 μm are shifted to submicron size, D50 ~0.6 μm, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.
        4,000원
        12.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Milled carbon fiber (mCF) was prepared by a ball milling process, and X-ray diffraction (XRD) diffractograms were obtained by a 2θ continuous scanning analysis to study mCF crystallinity as a function of milling time. The raw material for the mCF was polyacrylonitrile- based carbon fiber (T700). As the milling time increased, the mean particle size of the mCF consistently decreased, reaching 1.826 μm at a milling time of 18 h. The XRD analysis showed that, as the milling time increased, the fraction of the crystalline carbon decreased, while the fraction of the amorphous carbon increased. The (002) peak became asymmetric before and after milling as the left side of the peak showed an increasingly gentle slope. For analysis, the asymmetric (002) peak was deconvoluted into two peaks, less-developed crystalline carbon (LDCC) and more-developed crystalline carbon. In both peaks, Lc decreased and d002 increased, but no significant change was observed after 6 h of milling time. In addition, the fraction of LDCC increased. As the milling continued, the mCF became more amorphous, possibly due to damage to the crystal lattices by the milling.
        4,000원
        13.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
        4,000원
        14.
        2013.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To observe the formation of defects at the interface between an oxide semiconductor and SiO2, ZnO was preparedon SiO2 with various oxygen gas flow rates by RF magnetron sputtering deposition. The crystallinity of ZnO depends on thecharacteristic of the surface of the substrate. The crystallinity of ZnO on a Si wafer increased due to the activation of ionicinteractions after an annealing process, whereas that of ZnO on SiO2 changed due to the various types of defects which hadformed as a result of the deposition conditions and the annealing process. To observe the chemical shift to understand of defectdeformations at the interface between the ZnO and SiO2, the O 1s electron spectra were convoluted into three sub-peaks bya Gaussian fitting. The O 1s electron spectra consisted of three peaks as metal oxygen (at 530.5eV), O2− ions in an oxygen-deficient region (at 531.66eV) and OH bonding (at 532.5eV). In view of the crystallinity from the peak (103) in the XRDpattern, the metal oxygen increased with a decrease in the crystallinity. However, the low FWHM (full width at half maximum)at the (103) plane caused by the high crystallinity depended on the increment of the oxygen vacancies at 531.66eV due tothe generation of O2− ions in the oxygen-deficient region formed by thermal activation energy.
        4,000원
        15.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We study the relationships between the thermal emissivity of nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) and their surface structural change by oxidation using scanning electron microscope and X-ray diffraction (XRD). The nonoxidized (0% weight loss) specimen had the surface covered with glassy materials and the 5% and 10% oxidized specimens, however, showed high roughness of the surface without glassy materials. During oxidation the binder materials were oxidized first and then graphitic filler particles were subsequently oxidized. The 002 interlayer spacings of the non-oxidized and the oxidized specimens were about 3.38~3.39a. There was a slight change in crystallite size after oxidation compared to the nonoxidized specimens. It was difficult to find a relationship between the thermal emissivity and the structural parameters obtained from the XRD analysis.
        4,000원
        16.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of activated carbons (ACs) were derived from sugarcane bagasse under two activation schemes: steam-pyrolysis at 600-800℃ and chemical activation with H3PO4 at 500℃. Some carbons were treated at 400, 600℃, or for 1-3 h, and/or in flowing air during pyrolysis of acid-impregnated mass. XRD profiles displayed two broad diffuse bands centered around 2θ=23 and 43˚, currently associated with diffraction from the 002 and 100/101 set of planes in graphite, respectively. These correspond to the interlayer spacing, Lc, and microcrystallite lateral dimensions, La, of the turbostratic (fully disordered) graphene layers. Steam pyrolysis-activated carbons exhibit only the two mentioned broad bands with enhancement in number of layers, with temperature, and small decrease in microcrystallite diameter, La. XRD patterns of H3PO4-ACs display more developed and separated peaks in the early region with maxima at 2θ=23, 26 and 29˚, possibly ascribed to fragmented microcrystallites (or partially organized structures). Diffraction within the 2θ=43˚ is still broad although depressed and diffuse, suggesting that the intragraphitic layers are less developed. Varying the conditions of chemical activation inflicts insignificant structural alterations. Circulating air during pyrolysis leads to enhancement of the basic graphitic structure with destruction and degradation in the lateral dimensions.
        4,000원
        20.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural studies of amorphous isotropic carbon prepared from pyrolysis of phenol formaldehyde resin have been carried out using X-ray diffraction. X-ray diffraction from as prepared sample at 1000℃ and a sample treated at 1900℃ revealed that both are amorphous even though there are small differences in short range order. It is found that both are graphite like carbon (GLC) with predominantly sp2 hybridization. Small angle X-ray scattering results show that as prepared sample mainly consists of thin two dimensional platelets of graphitic carbon whereas they grow in thickness to become three dimensional materials of nano dimensions.
        3,000원
        1 2