검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        3.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball millingof (Fe, TiH2, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sinteringare tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200and 1300oC for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried outunder the following condition: sintering temperature of 1050oC, soaking time of 10 min, sintering pressure of 50 MPa,heating rate of 50oC/min, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) areobtained from the data stored automatically during sintering process. The densification behaviors are investigated fromthe observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder com-pacts are not densified even after sintering at 1300oC for 3 h, which shows a relative denstiy of 66.9%. Spark-plasmasintering at 1050oC for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of50 MPa.
        4,000원
        4.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and 1300oC for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of 1050oC, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of 50oC, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at 1300oC for 3h. Spark-plasma sintering at 1050oC for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.
        4,000원
        5.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-TiC composite powders are fabricated by planetary ball mill processing. Two kinds of powder mixtures are prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, TiH2, Carbon) powders. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) are varied. For (Fe, TiH2, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing is added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity are investigated. In case of (Fe, TiC) powder many coarse TiC particulates with size of several μm are unevenly distributed in Fe-matrix. The composite powder prepared from (Fe, TiH2, C) powder mixture showed a homogeneous dispersion of ulatrafine TiC particulates.
        4,000원
        6.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of oxygen content in the ultrafine tungsten powder fabricated by electrical explosion of wire method on the behvior of spark plasma sintering was investigated. The initial oxygen content of 6.5 wt% of as-fabricated tungsten powder was reduced to 2.3 and 0.7 wt% for the powders which were reduction-treated at 400˚C for 2 hour and at 500˚C for 1h in hydrogen atmosphere, respectively. The reduction-treated tungsten powders were spark-plasma sintered at 1200-1600˚C for 100-3600 sec. with applied pressure of 50 MPa under vacuum of 0.133 Pa. Maximun sindered density of 97% relative density was obtained under the condition of 1600˚C for 1h from the tungsten powder with 0.7 wt% oxygen. Sintering activation energy of 95.85kJ/mol-1 was obtained, which is remarkably smaller than the reported ones of 380~460kJ/mol-1 for pressureless sintering of micron-scale tungsten powders.
        4,000원
        7.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-TiC composite powder was fabricated by high-energy milling of powder mixture of (Fe, TiC) and (FeO, TiH2, C) as starting materials, respectively. The latter one was heat-treated for reaction synthesis of TiC phase after milling. Both powders were spark-plasma sintered at various temperatures of 680-1070℃ for 10 min. with sintering pressure of 70 MPa and the heating rate of 50℃/min. under vacuum of 0.133 Pa. Density and hardness of the sintered compact was investigated. Fe-TiC composite fabricated from (FeO, TiH2, C) as starting materials showed better sintered properties. It seems to be resulted from ultra-fine TiC particle size and its uniform distribution in Fe-matrix compared to the simply mixed (Fe, TiC) powder.
        4,000원
        8.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study demonstrates the effect of solidification condition on the pore structure in freeze drying process using the slurries of CuOlimable vehicles. Camphene and Camphor-45 wt% naphthalene based slurries with 14 vol% CuO powder were frozen into a mold at -25℃<, followed by sublimation at room temperature. The green bodies were hydrogen-reduced and sintered at 500℃ for 1 h. The porous Cu specimen, frozen the CuO/camphene slurry into the heated mold of the upper part, showed large pores with unidirectional pore channels and small pores in their internal wall. Also, it was observed that the size of large pores was decreasing near the bottom part of specimen. The change of pore structure depending on the freezing condition was explained by the nucleation behavior of camphene crystals and rearrangement of solid powders during solidification. In case of porous Cu prepared from CuO/Camphor-naphthalene system, the pore structure exhibited plate shape as a replica of the original structure of crystallized vehicles with hypereutectic composition.
        4,000원
        10.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.
        4,000원
        11.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based (FeCSiBPCrMoAl) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.
        4,000원
        12.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based (FeCSiBPCrMoAl) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 m showed that the glass transition, T, onset crystallization, T, and super-cooled liquid range T=T-T were 512, 548 and 36, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.
        4,000원
        13.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.
        4,000원
        14.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni based() bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to in the WC-Co hard metal mold.
        4,000원
        15.
        2006.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ] oxide layer on the surface of each W(tungsten) nanopowder produced by the electric explosion of wire(EEW) process were formed during the 1vol.% air passivation process. The oxide layer hindered sintering densification of compacts during SPS process. The oxide phase was reduced to the pure W phase during SPS. The W nanopowder's compacts treated by the hydrogen reduction showed high sintered density of 94.5%. after SPS process at .
        4,000원
        1 2 3 4 5