Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.