Single nucleotide polymorphisms (SNPs) are the most abundant variation in plant genomes. As DNA markers, SNPs are rapidly replacing simple sequence repeats (SSRs) and sequence tagged sites (STSs) markers, because SNPs are more abundant, stable, easy to automation, efficient, and increasingly cost-effective. We developed a 96-plex indica/japonica SNP genotyping set for genetic analysis and molecular breeding in rice using Fluidigm platform. Informative SNPs for indica/japonica populations were selected from 1536 Illumina SNPs and 44K Affymetrix SNP chip data of Rice Diversity and our resequencing data sets. Selected SNPs were evenly distributed across 12 chromosomes and average physical distance between adjacent SNP markers was 4.38Mb. We conducted genetic diversity analysis of 49 Bangladesh germplasm and check varieties to test a 96-plex indica/japonica SNP genotyping set we developed. High-throughput Fluidigm SNP genotyping system will serve a more efficient and valuable tool for genetic diversity analysis, DNA fingerprinting, quantitative trait locus (QTL) mapping and background selection for crosses between indica and japonica in rice. This work was supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center No. PJ008125), Rural Development Administration, Republic of Korea.