Gamma irradiation has been used as a tool for plant mutation breeding to select new cultivar with improved characteristics. Generally, the irradiation of seeds with high doses of gamma rays disturbs the synthesis of protein, hormone balance, and enzyme activity. And also, high dose of gamma rays to reduce plant height, number of tiller, and root length, although the effect of gamma-irradiated plants may depend on the species and cultivar or stress conditions. Biological effects of radiations can be divided into two types according to dose range and periods of exposure. Acute irradiation represents exposure to high-dose of irradiation over short period time, whereas the chronic irradiation is comprised of exposure to low doses of radiation over extended period of time. To compare the effects of acute and chronic exposure to ionizing radiation on two wheat cultivars (K4191 and Geumgangmil), we measured their germination rate, seedling height, and root length. In order to understand the influence of antioxidant-related genes and DNA repair-related genes, we used qRT-PCR methods to identify their expression levels. To study the behavior of a radiation-induced free radical, gamma-irradiated seeds were used for ESR spectroscopy. Plant growth pattern was showed positive correlation with ESR results. This study indicates that low level chronic radiation exposure is even more serious effects than short doses of high level radiation according to different wheat cultivar.