The effect of adding Ca on the microstructural and mechanical properties of as-cast Mg-11Li-3Zn-1Sn(wt%) alloys were investigated. Mg-11Li-3Zn-1Sn-0.4Mn with different Ca additions (0.4, 0.8, 1.2 wt%) were cast under an SF6 and Co2 atmosphere at 720 oC. The cast billets were homogenized at 400 oC for 12h and extruded at 200 oC. The microstructural and mechanical properties were analyzed by OM, XRD, SEM, and tensile tests. The addition of Ca to the Mg-11Li-3Zn-1Sn-0.4Mn alloy resulted in the formation of Ca2Mg6Zn3, MgSnCa intermetallic compound. By increasing Ca addition, the volume fraction and size of Ca2Mg6Zn3 with needle shape were increased. This Ca2Mg6Zn3 intermetallic compound was elongated to the extrusion direction and refined to fine particles due to severe deformation during hot extrusion. The elongation of the 0.8 wt% Ca containing alloy improved remarkably without reduction strength due to the formation of fine grain and Ca2Mg6Zn3 intermetallic compounds by Ca addition. It is probable that fine and homogeneous Ca2Mg6Zn3 intermetallic compounds played a significant role in the increase of mechanical properties.