논문 상세보기

시계열 환경변수 분포도 작성 및 불확실성 모델링: 미세먼지(PM10) 농도 분포도 작성 사례연구 KCI 등재

Time-series Mapping and Uncertainty Modeling of Environmental Variables: A Case Study of PM10 Concentration Mapping

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/304888
구독 기관 인증 시 무료 이용이 가능합니다. 4,900원
한국지구과학회지 (The Journal of The Korean Earth Science Society)
한국지구과학회 (The Korean Earth Science Society)
초록

이 논문에서는 환경변수의 시계열 분포도 작성과 불확실성 모델링을 위해 시공간영역으로 확장된 다중 가우시안 크리깅을 제안하였다. 다중 가우시안 틀 안에서, 우선 정규점수변환된 환경변수를 결정론적 경향 성분과 확률론적 잔차 성분으로 분해하였다. 그리고 시간 경향 모델 계수의 내삽을 통해 경향 성분의 시계열 공간 분포도를 작성하였다. 정상성 잔차 성분의 시공간 상관 구조는 곱-합 시공간 베리오그램 모델을 이용하여 정량화하였고, 이 베리오그램 모델과 시공간 크리깅을 이용하여 국소적 누적 확률분포함수를 모델링하였다. 이 국소적 누적 확률분포함수로부터 평균값과 조건부 분산을 계산하여 공간분포도 작성과 불확실성 분석에 각각 이용하였다. 제안 기법의 적용성 평가를 위해 인천광역시에서 3년간 13개 관측소에서 측정된 월 평균 미세먼지(PM10) 농도 자료를 이용한 시계열 분포도 작성 사례 연구를 수행하였다. 사례연구 결과, 제안 기법을 통해 기존 공간 정규 크리깅에 비해 작은 편향과 높은 예측 능력을 가진 시계열 미세먼지(PM10) 농도 분포도 작성이 가능함을 확인할 수 있었다. 또한 조건부 분산과 특정 농도값을 초과할 확률값들은 해석을 위한 유용한 보조 정보를 제공하였다.

A multi-Gaussian kriging approach extended to space-time domain is presented for uncertainty modeling as well as time-series mapping of environmental variables. Within a multi-Gaussian framework, normal score transformed environmental variables are first decomposed into deterministic trend and stochastic residual components. After local temporal trend models are constructed, the parameters of the models are estimated and interpolated in space. Space-time correlation structures of stationary residual components are quantified using a product-sum space-time variogram model. The ccdf is modeled at all grid locations using this space-time variogram model and space-time kriging. Finally, e-type estimates and conditional variances are computed from the ccdf models for spatial mapping and uncertainty analysis, respectively. The proposed approach is illustrated through a case of time-series Particulate Matter 10 (PM10) concentration mapping in Incheon Metropolitan city using monthly PM10 concentrations at 13 stations for 3 years. It is shown that the proposed approach would generate reliable time-series PM10 concentration maps with less mean bias and better prediction capability, compared to conventional spatial-only ordinary kriging. It is also demonstrated that the conditional variances and the probability exceeding a certain thresholding value would be useful information sources for interpretation.

저자
  • 박노욱(인하대학교 지리정보공학과) | Park, No-Wook