논문 상세보기

비선형 대기 모형에서 수치 해의 시간 간격 민감도 KCI 등재

Sensitivity of Numerical Solutions to Time Step in a Nonlinear Atmospheric Model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/304999
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국지구과학회지 (The Journal of The Korean Earth Science Society)
한국지구과학회 (The Korean Earth Science Society)
초록

대기 모델링 연구에서 시간 간격을 적절하게 결정하는 것은 중요한 문제이다. 본 연구에서는 비선형 대기 모형에서 수치 해의 시간 간격에 대한 민감도를 조사하였다. 이를 위해 간단한 무차원화된 역학 모형을 사용하여 시간 간격과 비선형성 인자를 바꾸어가며 수치 실험을 수행하였다. 실험 결과, 비선형성 인자가 영향을 줄 만큼 크지 않고 절단 오차를 무시할 수 있는 경우에는 수치 해가 시간 간격에 민감하지 않았다. 그러나 비선형성 인자가 큰 경우에는 수치 해가 시간 간격에 민감한 것으로 밝혀졌다. 이 경우, 시간 간격이 감소할수록 공간 필터의 강도가 증가하여 작은 규모의 현상이 약하게 모의되었다. 이는 일반적으로 시간 간격이 감소하면 절단 오차가 감소하여 더 정확한 수치 해가 도출된다는 사실과 상충한다. 이러한 충돌은 비선형 모형의 수치 해를 안정하게 하기 위해 공간 필터가 반드시 필요하기 때문에 피할 수 없다.

An appropriate determination of time step is one of the important problems in atmospheric modeling. In this study, we investigate the sensitivity of numerical solutions to time step in a nonlinear atmospheric model. For this purpose, a simple nondimensional dynamical model is employed, and numerical experiments are performed with various time steps and nonlinearity factors. Results show that numerical solutions are not sensitive to time step when the nonlinearity factor is not influentially large and truncation error is negligible. On the other hand, when the nonlinearity factor is large (i.e., in a highly nonlinear regime), numerical solutions are found to be sensitive to time step. In this situation, smaller time step increases the intensity of the spatial filter, which makes small-scale phenomena weaken. This conflicts with the fact that smaller time step generally results in more accurate numerical solutions owing to reduced truncation error. This conflict is inevitable because the spatial filter is necessary to stabilize the numerical solutions of the nonlinear model.

저자
  • 이현호(서울대학교 지구환경과학부) | Lee, Hyunho
  • 백종진(서울대학교 지구환경과학부) | 백종진
  • 한지영((재)한국형수치예보모델개발사업단) | 한지영