서울을 포함한 수도권지역의 지표면 특성분석을 위하여 Landsat 위성자료(Landsat 5, Landsat 7, Landsat 8)를 이용하여 다양한 지표 특성지수와 지표면 온도를 계산하였다. 연구에 사용된 Landsat 자료는 가을철 자료로써 1985년 10월 21일의 Landsat 5, 2003년 9월 29일의 Landsat 7 그리고 2013년 9월 1일의 Landsat 8 자료를 이용하였다. 그리고 서울과 주변지역에 대하여 토양조절 식생지수, 수정 정규 습윤지수, 정규 습윤지수, 태슬 모자형 밝기, 태슬 모자형 초록, 태슬 모자형 습윤, 정규 식생지수, 정규 건설지수와 같은 지표 특성지수와 지표면 온도를 산출하였다. 대부분의 지표 특성지수들은 도시, 시골, 산, 건물, 강 그리고 도로 등에서 잘 구별되었다. 특히, 도시화의 특징은 서울 주변의 신도시(예, 일산)에서 잘 나타났다. 정규 식생지수와 정규 건물지수 그리고 지표면 온도에 따르면 도시의 확장은 서울의 주변지역에서 뚜렷이 보였다. 지표면 온도와 지표고도는 식생 또는 건설물의 구조와 분포를 나타내는 정규 식생지수 그리고 정규 건물지수와 강한 상관성이 나타났다. 정규 식생지수는 지표면온도와 양의 상관성을 보였고 지표고도와 음의 상관성을 가지는 반면, 정규 식생지수는 지표면온도와 지표고도에 대하여 각각 반대의 특성을 나타내었다. 또한, Landsat의 정규 식생지수와 정규 건물지수는 수도권지역에서 밀접한 관계를 보였다. Landsat 8과 Landsat 5에서는 -0.6 이하의 강한 상관성이 있었으며 Landsat 7에서는 -0.5 이상의 낮은 상관성이 나타났다.
In order to analyze the land surface properties in Seoul and its surrounding metropolitan area, several indices and land surface temperature were calculated by the Landsat satellites (e.g., Landsat 5, Landsat 7, and Landsat 8). The Landsat data came from only in the fall season with Landsat 5 on October 21, 1985, Landsat 7 on September 29, 2003, and Landsat 8 on September 16, 2013. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the land surface temperature of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new city (e.g., Ilsan) around Seoul. According to NDVI, NDBI and land surface temperature, urban expansion is displayed in the surrounding area of Seoul. The land surface temperature and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the land surface temperature and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. The NDVI and NDBI index is closely associated with the characteristics of the metropolitan area. Landsat 8 and Landsat 5 have very strong correlations (more than -0.6) but Landsat 7 has a weak one (lower than -0.5).