논문 상세보기

종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로- KCI 등재

Predicting the Goshawk’s habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/305294
구독 기관 인증 시 무료 이용이 가능합니다. 4,200원
한국환경생태학회지 (한국환경생태학회지 (환생지))
한국환경생태학회 (Korean Society of Environment & Ecology)
초록

본 연구는 국내에서 아직 미흡한 조류 번식지 예측 모형을 이용해 참매의 서식지 예측 및 대체번식지로서 이용 가능한 지역을 선정하고, 향후 참매 번식 가능지역을 대상으로 보호관리 지역을 확대할 수 있는 근거를 제시하기 위한 방안이다. 참매의 번식지는 현장조사에서 확인된 둥지(N=10)를 이용하였으며, 출현지점은 제3차자연환경조사를 통해 확인된 참매출현지점(N=23)을 활용해 분석하였다.
모형변수로는 지형인자 4가지, 자연환경인자(식생) 3가지, 거리인자 7가지, 기후변수 9가지를 활용하였다. 활용변수 중 Random sampling을 통해 확보된 비출현 좌표와 출현좌표간 비모수 검증을 통해 최종 환경변수를 선정하였다. 유의성 검증을 통해 선택된 변수는 번식지 대상 10가지, 출현지점 대상 7가지였으며, 이 변수를 활용해 최종 서식지 예측 모형(MaxEnt)을 구축하였다. 모델 구축결과 번식에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 혼효림과의 거리, 입목밀도, 경급의 순이었으며, 출현지점에 활용된 각 변수별 모형 기여도는 온도의 계절적 변동, 수계와의 거리, 경작지와의 거리, 경사도의 순이었다.
번식지점을 대상으로 한 모델링은 기후환경과 숲 내부에서 번식하는 참매의 특성이 반영된 것으로 판단된다. 예상서식지는 충청북도 중부 이북지역으로 예상되었으며, 그 면적은 189.5㎢(2.55%)였다. 충북 이남지역은 청주와 충주 등의 비교적 큰 도시가 발달되어 있는 반면 충청북도 북부지역의 경우 산림과 경작지가 고루 발달되어 있어 번식에 있어 일정한 세력권과 먹이원이 필요한 참매로서는 번식에 유리한 지역일 것으로 판단된다.
출현지점 대상으로 한 모델링은 면적이 3,071㎢(41.38%)으로 확인되었으며, 이는 출현지점을 대상으로 하여 단순 이동 관찰 및 계절적인 변동 미고려 등의 한계가 있기 때문에 번식지점을 대상으로 한 모델링보다 광범위한 서식예상지역을 예측하였다. 결과에서 확인된 예측지점은 번식지를 대상으로 하였을 경우 정밀한 서식예측이 가능하나, 둥지의 특성상 확인되는 지점이 적고, 참매의 행동영역을 반영하지 못하는 단점이 있다. 반면 출현지점을 대상으로 하였을 경우 더 광범위한 지점에 대한 결과 도출이 가능하였으나, 단순 이동이나 지속적인 이용실태를 반영하지 못하기 때문에 정밀도에서는 다소 떨어진다고 할 수 있다. 다만 이러한 결과들을 통해 참매의 서식지를 예측할 수 있으며, 특히 정밀한 번식지역의 예측자료는 환경영향평가나 개발계획 수립시 서식지 모형 결과를 도입하여 반영할 필요성이 있다.

This research aims at identifying the goshawk’s possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk’s breeding for the future. The field research identified 10 goshawk’s nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient.
The nature of the goshawk’s breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about 189.5 ㎢(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of 3,071 ㎢(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk’s behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk’s habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

저자
  • 조해진(전북대학교 조경학과, 한국환경생태연구소) | Hae-Jin Cho
  • 김달호(전북대학교 조경학과, 한국환경생태연구소) | Dal-Ho Kim
  • 신만석(전북대학교 조경학과, 국립생태원) | Man-Seok Shin
  • 강태한(한국환경생태연구소) | Tehan Kang
  • 이명우(전북대학교 조경학과) | Myungwoo Lee 교신저자