Tight junctions (TJs) form continuous intercellular contacts in intercellular junctions. TJs involve integral proteins such as occludin (OCLN) and claudins (CLDNs) as well as peripheral proteins such as zona occludens-1 (ZO-1) and junctional adhesion molecules (JAMs). TJs control paracellular transportation across cell-to-cell junctions. Although TJs have been studied for several decades, comparison of the transcriptional-translational levels of these molecules in canine organs has not yet been performed. In this study, we examined uterine expression of CLDNs, OCLN, junction adhesion molecule-A, and ZO-1 in canine. Expression levels of canine uterine TJ proteins, including CLDN1, 2, 4, 5, JAM-A, ZO-1, and OCLN, were measured using reverse transcription PCR, real-time PCR, and Western blotting, whereas TJs distribution was determined by immunohistochemistry. The mRNA and protein expression levels of OCLN, CLDN-1, 4, JAM-1, and ZO-1 were identified in the uterus. Immunohistochemistry demonstrated that TJs were localized to the endometrium and/or myometrium of the uterus. Our results show that canine TJ proteins, including CLDNs, OCLN, JAM-A, and ZO-1, were expressed in the canine uterus. Taken together, these proteins may perform unique physiological roles in the uterus. Therefore, these findings may serve as a basis for further studies on TJ proteins and their roles in the physiological or pathological condition of the canine uterus.