일반적으로수위-유량관계곡선식은선형성과등분산성가정을기반으로구축되지만, 측정단면의형태, 단면상·하류의지형요인등으로 인하여 영향을 받기 때문에 실질적인 수위 및 유량의 관계는 관계식 구축에 이용되는 가정에 위배된다. 이로 인한 오차를 줄이기 위하여 곡선식을분할하여이용하고있으나, 측정단면의변화를 고려한관계자의주관적인판단이구간분할의주요근거로이용되고있다. 따라서 본연구에서는이러한주관성을배제하고관측데이터를기반으로객관화된분할근거를제시하고자한다. 곡선식의구간분할을위하여변동계수 를이용한기존의연구를바탕으로변동계수가정규분포를따르는것으로가정하여, 계산된변동계수가전단계에서계산된95%신뢰구간 이내에존재하지않는경우구간을분할하였다. 즉, 변동계수를이용하여집단간의특성을비교하였으며, 변동계수의분포를이용하여분할을 위한기준값을제시하였다. 방법론의추정능력검토를위하여가상의곡선으로부터생성된데이터에제안된방법론을적용하였고, 실제유역에 적용성 검토를 위하여 금강에 위치한 무주 및 산계교 수위관측소 지점에 적용하였다. 결과적으로 자동으로 분할된 관계곡선식을 사용하여 추정의정확도를높일수있을뿐만아니라외삽을하는경우역시그정확도를향상할수있음을확인하였다. 마지막으로실측값을활용한 수위-유량관계곡선식의구축시구간분할전·후의잔차데이터에대하여Shapiro-wilk 정규성검정을수행하였으며, 구간분할후잔차가 정규성을 갖게 되는 것으로 나타났다.
In general, the water stage-discharge relationship curve is established based on the assumptions of linearity and homoscedasticity. However, the relationship between the water stage and discharge is affected from geomorphological factors, which violates the basic assumptions of the water stage-discharge relationship curve. In order to reduce the error due to the violations, the curve is divided into several sections based on the manager’s judgement considering change of cross-sectional shape. In this research, the objective-splitting criteria of the curve is proposed based on the measured data without the subjective decision. First, it is assumed that the coefficient of variation follows the normal distribution. Then, if the newly calculated coefficient of variation is outside of the 95% confidential interval, the curve is divided. Namely, the groups is divided by the characteristics of the coefficient of variation and the reasonable criteria is provided for establishing a multi-segmented rating curve. To validate the proposed method, it was applied to the data generated by three artificial power functions. In addition, to confirm the applicability of the proposed method, it is applied to the water stage and discharge data of the Muju water stage gauging station and Sangegyo water stage gauging station. As a result, it is found that the automatically divided rating curve improves the accuracy and extrapolation accuracy of the rating curve. Finally, through the residual analysis using Shapiro-Wilk normality test, it is confirmed that the residual of water stage-discharge relationship curve tends to follow the normal distribution.