PURPOSES : To operate more efficient traffic management system, it is utmost important to detect the change in congestion level on a freeway segment rapidly and reliably. This study aims to develop classification method of congestion change type. METHODS: This research proposes two classification methods to capture the change of the congestion level on freeway segments using the dedicated short range communication (DSRC) data and the vehicle detection system (VDS) data. For developing the classification methods, the decision tree models were employed in which the independent variable is the change in congestion level and the covariates are the DSRC and VDS data collected from the freeway segments in Korea. RESULTS : The comparison results show that the decision tree model with DSRC data are better than the decision tree model with VDS data. Specifically, the decision tree model using DSRC data with better fits show approximately 95% accuracies. CONCLUSIONS : It is expected that the congestion change type classified using the decision tree models could play an important role in future freeway traffic management strategy.