PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection.
METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization.
RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models.
CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.