고대 중국에서 기원된 바둑은 인공지능 분야에서 가장 어려운 도전 중의 하나로 간주된다. 지난 수년에 걸쳐 MCTS를 기반으로 하는 정상급 컴퓨터바둑 프로그램이 놀랍게도 접바둑에서 프로기사를 물리쳤다. MCTS는 게임이 끝날 때까지 일련의 무작위 유효착수를 시뮬레이션 하 는 접근법이며, 기존의 지식기반 접근법을 대체했다. 저자는 MCTS의 변형인 UCT 알고리즘을 삼목 게임에 적용하여 최선의 첫 수를 찾고자 했으며, 순수 MCTS의 결과와 비교를 했다. 아울 러 UCB 이해를 위한 다중슬롯머신 문제를 풀기 위해 엡실론-탐욕 알고리즘과 UCB 알고리즘 을 소개 및 성능을 비교하였다.
The game of Go originated from ancient China is regarded as one of the most difficult challenges in the filed of AI. Over the past few years, the top computer Go programs based on MCTS have surprisingly beaten professional players with handicap. MCTS is an approach that simulates a random sequence of legal moves until the game is ended, and replaced the traditional knowledge-based approach. We applied the UCT algorithm which is a MCTS variant to the game of Tic-Tac-Toe for finding the best first move, and compared it with the result generated by a pure MCTS. Furthermore, we introduced and compared the performances of epsilon-Greedy algorithm and UCB algorithm for solving the Multi-Armed Bandit problem to understand the UCB.