표고버섯 재배 임가들이 생산량과 출하 시기를 결정하는 데 가격은 결정적인 역할을 하지만, 표고버 섯 가격 전망에 대한 연구는 미진한 상황이다. 이 연구의 목적은 표고버섯의 중품, 상품, 특품의 월별 가격자료를 이용하여 시계열 분석 모형을 구축하고, 이들의 단기 가격 예측력을 비교하는 것이다. 이를 위해, 2002∼2015년 동안의 등급별 가락시장 표고버섯 가격자료를 이용하여 Seasonal Exponential Smoothing 모델, Seasonal ARIMA with intercept 모델, Seasonal ARIMA without intercept 모델, Seasonal Dummy 모델을 포함하는 네가지 형태의 시계열 분석 모형을 구축하고 단기 가격을 예측하였 다. 또 통계적 검증방법을 이용하여 이들 모델의 가격 예측력을 비교하였다. 분석 결과, Seasonal ARIMA without intercept 모형의 가격 예측 능력이 가장 우수한 것으로 나타났다. 향후 다른 단기 소 득 임산물의 가격 예측에도 이들 모델을 적용함으로써 임가들의 생산 출하에 대한 의사결정에 유용한 정보를 제공할 수 있을 것이다.
Price has a critical role to determine the timing of producing and shipping oak mushroom products. This study investigates the price prediction of oak mushroom products by constructing time-series models, using monthly market price data. Using oak mushroom price data from Jan. 2002 to May. 2015 by product grade, we built four models: Seasonal Exponential Smoothing Model, Seasonal ARIMA with intercept Model, Seasonal ARIMA without intercept Model, Seasonal Dummy Model. We predict future short-term prices by using those four models and compare the prediction accuracy statistically. As a result, Seasonal ARIMA without intercept Model is the most suitable model for the projection of a short-term oak-mushroom price. Because this model is applicable to other short-term income forest products, forestry households can utilize the information on the future prices of forest products for decision-making.